精英家教网 > 高中数学 > 题目详情
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=,BC=4.
(I)求证:BD⊥PC;
(II)设AC与BD相交于点O,在棱PC上是否存在点E,使得OE∥平面PAB?若存在,确定点E位置.

【答案】分析:(I)利用勾股定理可得DB,利用余弦定理和勾股定理的逆定理可得∠BDC=90°,即BD⊥DC,再利用线面垂直的性质定理可得PD⊥BD,利用线面垂直的判定定理即可证明结论;
(II)存在点E,使得OE∥平面PAB,此时.在PC上取点E使得,连接OE.利用平行线分线段成比例定理可得
,即可得到OE∥PA.利用线面平行的判定定理即可证明.
解答:证明:(Ⅰ)在Rt△ABD中,∵AD=1,AB=
=4,∴BD=2.
∴∠ABD=30°,
∴∠DBC=60°.
在△BCD中,由余弦定理得DC2=22+42-2×2×4cos60°=12,
∴DB2+DC2=BC2
∴∠BDC=90°.∴BD⊥DC.
∵PD⊥平面ABCD,∴PD⊥BD.
又PD∩DC=D,∴BD⊥平面PDC.
∴BD⊥PC.
(II)存在点E,使得OE∥平面PAB,此时.证明如下:
在PC上取点E使得,连接OE.
由AD∥BC,
,可得OE∥PA.
又∵PA?平面PAB,OE?平面PAB,
∴OE∥平面PAB.
点评:本题综合考查了余弦定理和勾股定理的逆定理、线面垂直的判定与性质定理、平行线分线段成比例定理等基础知识与基本技能,考查了空间想象能力和推理能力及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知棱锥P-ABCD的底面ABCD为直角梯  形,AB∥CD,AB⊥BC,CD=PB=BC=1,
AB=2,且PB⊥底面ABCD.
(Ⅰ)试在棱PB上求一点M,使CM∥平面PDA;
(Ⅱ)在(Ⅰ)的结论下,求三棱锥P-ADM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年天津一中高三(下)第二次月考数学试卷(理科)(解析版) 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省五市高三第一次联考数学试卷(文科)(解析版) 题型:解答题

如图,已知棱锥P-ABCD的底面ABCD为直角梯  形,AB∥CD,AB⊥BC,CD=PB=BC=1,
AB=2,且PB⊥底面ABCD.
(Ⅰ)试在棱PB上求一点M,使CM∥平面PDA;
(Ⅱ)在(Ⅰ)的结论下,求三棱锥P-ADM的体积.

查看答案和解析>>

同步练习册答案