精英家教网 > 高中数学 > 题目详情

【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为: (t为参数),曲线C的极坐标方程为:ρ=4cosθ.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.

【答案】
(1)解:∵ρ=4cosθ.∴ρ2=4ρcosθ,

∵ρ2=x2+y2,ρcosθ=x,∴x2+y2=4x,

所以曲线C的直角坐标方程为(x﹣2)2+y2=4,

(t为参数)消去t得: .所以直线l的普通方程为


(2)解:把 代入x2+y2=4x得:t2﹣3 t+5=0.

设其两根分别为t1,t2,则t1+t2=3 ,t1t2=5.

所以|PQ|=|t1﹣t2|= =


【解析】(1)利用极坐标与直角坐标的对于关系即可得出曲线C的方程;对直线l的参数方程消参数可得直线l的普通方程;(2)把直线l的参数方程代入曲线C的直角坐标方程得出关于参数t的一元二次方程,利用参数的几何意义和根与系数的关系计算|PQ|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=﹣1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为﹣3,求a的值;
(3)设g(x)=xf(x),若a>0,对于任意的两个正实数x1 , x2(x1≠x2),证明:2g( )<g(x1)+g(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入m=4,t=3,则输出y=(
A.183
B.62
C.61
D.184

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a,b∈R,且a≠0,e为自然对数的底数).
(I)若曲线f(x)在点(e,f(e))处的切线斜率为0,且f(x)有极小值,求实数a的取值范围.
(II)(i)当 a=b=l 时,证明:xf(x)+2<0;
(ii)当 a=1,b=﹣1 时,若不等式:xf(x)>e+m(x﹣1)在区间(1,+∞)内恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为2 ,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0,+∞)上的函数f(x)满足f′(x)+2f(x)= ,且f(1)= ,则不等式f(lnx)>f(3)的解集为(
A.(﹣∞,e3
B.(0,e3
C.(1,e3
D.(e3 , +∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0.
(1)求直线l与曲线C的普通方程;
(2)已知直线l与曲线C交于A,B两点,设M(2,0),求| |的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:若定义域为R的函数f(x)不是偶函数,则x∈R,f(﹣x)≠f(x).命题q:f(x)=x|x|在(﹣∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是(
A.p为假
B.¬q为真
C.p∨q为真
D.p∧q为假

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+ |+|x﹣a|(a>0) (Ⅰ)证明:f(x)≥2
(Ⅱ)当a=1时,求不等式f(x)≥5的解集.

查看答案和解析>>

同步练习册答案