精英家教网 > 高中数学 > 题目详情
3.已知命题:?x∈R,x2-ax+2a>0在R上恒成立,则实数a的取值范围是(  )
A.(0,4)B.(-8,8)C.RD.(0,8)

分析 将关于x的不等式x2-ax+2a>0在R上恒成立,转化成△<0,从而得到关于a的不等式,求得a的范围.

解答 解:因为不等式x2-ax+2a>0在R上恒成立.
∴△=(-a)2-8a<0,解得0<a<8
则实数a的取值范围是:(0,8).
故选:D.

点评 本题主要考查了一元二次不等式的应用,以及恒成立问题的转化,同时考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-ax.
(I )若曲线y=f(x)在点(1,f(1))处的切线与直线y=ax+2平行.求实数a的值;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)当0<a<l时,证明:曲线y=f(x)在直线y=(e-1)x的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=5,$cosB=\frac{3}{5}$.则△ABC的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=(x2-3)ex,设关于x的方程${f^2}(x)-mf(x)-\frac{12}{e^2}=0(m∈R)$有n个不同的实数解,则n的所有可能的值为(  )
A.3B.1或3C.4或6D.3或4或6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左顶点为A,右焦点为F(1,0),过点A且斜率为1的直线交椭圆E于另一点B,交y轴于点C,$\overrightarrow{AB}=6\overrightarrow{BC}$.
(1)求椭圆E的方程;
(2)过点F作直线l与椭圆E交于M,N两点,连接MO(O为坐标原点)并延长交椭圆E于点Q,求△MNQ面积的最大值及取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若双曲线x2-y2=2右支上一点(s,t)到直线y=x的距离为2,则s-t的值等于(  )
A.2B.$2\sqrt{2}$C.-2D.$-2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.sin$\frac{3π}{4}$=(  )
A.-$\frac{\sqrt{2}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}各项均为正数,且对任意n∈N*,满足an+1=an+can2(c>0且为常数).
(Ⅰ)若a1,2a2,3a3依次成等比数列,求a1的值(用常数c表示);
(Ⅱ)设bn=$\frac{1}{1+c{a}_{n}}$,Sn是数列{bn}的前n项和,
(i)求证:$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=-\frac{c}{{1+c{a_n}}}$; 
(ii)求证:Sn<Sn+1<$\frac{1}{c{a}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义域为R的奇函数$f(x)=\frac{{-{2^x}+b}}{{{2^{x+1}}+2}}$.
(1)求b的值;
(2)证明函数f(x)为定义域上的单调递减函数;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案