精英家教网 > 高中数学 > 题目详情
8.已知直线x+ay-2=0与圆心为C的圆(x-a)2+(y-1)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±$\sqrt{15}$.

分析 根据△ABC为等边三角形,得到圆心到直线的距离为$\sqrt{3}$,根据点到直线的距离公式即可得到结论.

解答 解:圆(x-a)2+(y-1)2=4的圆心C(a,1),半径R=2,
∵直线和圆相交,△ABC为等边三角形,
∴圆心到直线的距离为Rsin60°=$\sqrt{3}$,
即d=$\frac{|2a-2|}{\sqrt{1+{a}^{2}}}$=$\sqrt{3}$,
平方得a2-8a+1=0,
解得a=4±$\sqrt{15}$,
故答案为:4±$\sqrt{15}$.

点评 本题主要考查直线和圆的位置关系的应用,根据△ABC为等边三角形,得到圆心到直线的距离是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.记min{a,b,c}为实数a,b,c中最小的一个,已知函数f(x)=-x+1图象上的点(x1,x2+x3)满足:对一切实数t,不等式-t2-${2}^{{x}_{1}^{2}}$t-2${\;}^{2+{x}_{1}^{2}-{x}_{2}^{2}-{x}_{3}^{2}}$+4${\;}^{2-{x}_{2}^{2}-{x}_{3}^{2}}$≤0均成立,如果min{-x1,-x2,-x3}=-x1,那么x1的取值范围是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,∠ABC=90°,且CD=2AB,点E在棱PB上,且PE=2EB,PA=AB=BC.
(1)求证:PD∥平面AEC;
(2)若PA=3,求三棱锥P-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集为R,函数$f(x)=\sqrt{4-{x^2}}$的定义域为M,则∁RM为(  )
A.[-2,2]B.(-2,2)C.(-∞,-2]∪[2,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.记[x]表示不超过实数x的最大整数.设集合A={(x,y)|x2+y2≤1},B={(x,y)|[x]2+[y]2≤1}.则A∪B所表示的平面区域的面积为5+$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点Q(2$\sqrt{2}$,0)及抛物线x2=4y上一动点P(x,y),则y+|PQ|的最小值是(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).
(Ⅰ)求选出的3名同学来自不同班级的概率;
(Ⅱ)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一个底面是正三角形且侧棱垂直于底面的三棱柱的正(主)视图如图所示,则其侧面积等于(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在直角坐标平面内,满足方程$({y^2}+2|x|)(\frac{x^2}{16}-\frac{y^2}{9})=0$的点(x,y)所构成的图形为(  )
A.抛物线及原点B.双曲线及原点
C.抛物线、双曲线及原点D.两条相交直线

查看答案和解析>>

同步练习册答案