精英家教网 > 高中数学 > 题目详情

【题目】为了了解学生考试时的紧张程度,现对100名同学进行评估,打分区间为,得到频率分布直方图如下,其中成等差数列,且.

(1)求的值;

(2)现采用分层抽样的方式从紧张度值在中共抽取5名同学,再从这5名同学中随机抽取2人,求至少有一名同学是紧张度值在的概率.

【答案】(1) (2) .

【解析】

(1)直接利用图中数据及成等差数列列方程组,解方程组即可。

(2)根据分层抽样中抽2人记为中抽3人记为,可列出基本事件总数为10种,“至少有一名在的同学”事件包含7个基本事件,利用古典概型概率计算公式计算得解。

(1)由题可得:

解得.

2)根据分层抽样中抽2人记为中抽3人记为

共有10种本事件:

事件为:至少有一名在的同学,该事件包含7个基本事件,

所以至少有一名同学是紧张度值在的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系曲线的参数方程为为参数)以坐标原点为极点轴的正半轴为极轴建立极坐标系曲线的极坐标方程为.

)求曲线的极坐标方程和的直角坐标方程

直线与曲线分别交于第一象限内的两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点.

(1)求椭圆的方程;

(2)若不经过点的直线交于两点,且直线与直线的斜率之和为,证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知向量,求的值.

2)已知共线且方向相同,求x

3)设向量,求当k为何值时,ABC三点共线?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1

(2)若函数f(x)R上单调递增,求实数a的取值范围;

(3)是否存在实数a,使不等式f(x)≥2x3对任意xR恒成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面个说法中正确的序号为_____

①函数有两个零点;

②函数的图象关于点对称;

③若是第三象限角,则的取值集合为

④锐角三角形中一定有

⑤已知),同一平面内有四个不同的点,若,则必定三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知函数,点分别是的图象与轴、轴的交点,分别是的图象上横坐标为的两点,轴,且三点共线.

1)求函数的解析式;

2)若,求

3)若关于的函数在区间上恰好有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数是函数的反函数.

求函数的解析式,并写出定义域

,判断并证明函数在区间上的单调性:

中的函数在区间内的图像是不间断的光滑曲线,求证:函数在区间内必有唯一的零点(假设为),且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为.

(Ⅰ)求曲线的直角坐标方程与直线的参数方程;

(Ⅱ)设直线与曲线交于两点,求的值.

查看答案和解析>>

同步练习册答案