精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;

(2)若圆上存在点,使,求圆心的横坐标的取值范围.

【答案】(1)或者;(2).

【解析】

试题分析:(1)联立两直线方程求得圆心为,圆的半径为,故圆的方程为.由于斜率存在,故设切线方程为,利用圆心到直线的距离等于半径,求得或者(2)依题意设设圆心,利用代入点的坐标化简得.由于两圆相交,根据圆与圆的位置关系列不等式,可求得的取值范围为:

试题解析:

(1)由得圆心的半径为1,

的方程为:

显然切线的斜率一定存在,设所求圆的切线方程为,即

或者

所求圆的切线方程为:或者或者

(2)解:的圆心在在直线上,所以,设圆心

则圆的方程为:

,则整理得:设为圆

应该既在圆上又在圆上,即圆和圆有交点,

终上所述,的取值范围为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线与直线)交于两点.

1)当时,分别求在点处的切线方程;

2轴上是否存在点,使得当变动时,总有?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A已知直线的参数方程为为参数),在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,圆的方程为

(1)求圆的圆心的极坐标;

(2)判断直线与圆的位置关系.

已知不等式的解集为

(1)求实数的值;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题:

①对立事件一定是互斥事件;

②函数的最小值为2;

③八位二进制数能表示的最大十进制数为256;

④在中,若 ,则该三角形有两解.

其中正确命题的个数为( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数定义域为,且对任意实数,有,则称为“形函数”,若函数定义域为,函数对任意恒成立,且对任意实数,有,则称为“对数形函数” .

(1)试判断函数是否为“形函数”,并说明理由;

(2)若是“对数形函数”,求实数的取值范围;

(3)若是“形函数”,且满足对任意,有,问是否为“对数形函数”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的离心率为,短轴的一个端点到右焦点的距离为

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:

2

4

6

8

10

4

5

7

9

10

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?

附:回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,a,b,c分别为角A,B,C所对的边,且

(1)求角C的大小;

(2)若 ,且三角形ABC的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过点和点,且圆心在直线上.

(1)求圆的方程;

(2)过点作圆的切线,求切线方程.

(3)设直线,且直线被圆所截得的弦为,满足,求直线的方程.

查看答案和解析>>

同步练习册答案