精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为

1)求侧面与底面所成的二面角的大小;

2)若的中点,求异面直线所成角的正切值;

3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.

【答案】1;(2;(3)点的四等分点.

【解析】

1)取中点,设,连,则为二面角的平面角,

利用解直角三角形可求其正切值.

2)连,则为异面直线所成的角,根据勾股定理求得,进而求得后可求的值.

3)可证点的四等分点.

1)取中点,设,连

为二面角的平面角,

为侧棱与底面所成的角,

2)连为异面直线所成的角.

因为,所以平面.

平面,所以.

,

3)延长,取中点,连

因为

平面,因平面

故平面平面

,故为等边三角形,

所以,由平面,故

因为,所以平面.

的中点,∵,∴

∴四边形为平行四边形,所以

平面.即为四等分点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC-A1B1C1的所有棱长都为2,DCC1中点.

(1)求证:AB1⊥平面A1BD;

(2)求锐二面角A-A1D-B的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下间题:“今有甲、乙、丙、丁、戊五人分五饯,令上二人所得与下三人等,且五人所得钱按顺序等次差,问各得几何?”其意思为“甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱(钱:古代一种重量单位)?”这个问题中丙所得为( )

A. B. C. 1钱 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实部为正数的复数z满足,且(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.

1)求复数z

2)若为纯虚数 , m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图4①,②,③,④为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;

(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)求的图象是由的图象如何变换而来?

2)求的最小正周期、图象的对称轴方程、最大值及其对应的的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有3个白球,4个黑球,从中任取3个球,则

①恰有1个白球和全是白球;

②至少有1个白球和全是黑球;

③至少有1个白球和至少有2个白球;

④至少有1个白球和至少有1个黑球.

在上述事件中,是互斥事件但不是对立事件的为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站从春节期间参与收发网络红包的手机用户中随机抽取名进行调查,将受访用户按年龄分成组: ,…, ,并整理得到如下频率分布直方图:

(Ⅰ)求的值;

(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于岁的概率;

(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解本校学生网课期间课后玩电脑游戏时长情况,随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生每天玩电脑游戏的时长的频率分布直方图.

1)根据频率分布直方图估计抽取样本的平均数(同一组中的数据用该组区间的中点值作代表);

2)已知样本中玩电脑游戏时长在的学生中,男生比女生多1人,现从中任选3人进行回访,求选出的3人中恰有两人是男生的概率.

查看答案和解析>>

同步练习册答案