精英家教网 > 高中数学 > 题目详情
13.棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,则线段D1E的长度为(  )
A.1B.2C.3D.4

分析 由题意,D1E⊥C1E,D1C1=2,C1E=$\sqrt{4+1}$=$\sqrt{5}$,利用勾股定理可得结论.

解答 解:由题意,D1E⊥C1E,D1C1=2,C1E=$\sqrt{4+1}$=$\sqrt{5}$,
∴D1E=$\sqrt{4+5}$=3,
故选:C.

点评 本题考查空间距离的计算,考查勾股定理的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设An和Bn是等差数列{an}和{bn}的前n项和,若$\frac{a_5}{b_7}=1$,则$\frac{A_9}{{{B_{13}}}}$=(  )
A.$\frac{9}{13}$B.$\frac{5}{7}$C.$\frac{17}{25}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\frac{1}{2}{x}^{2}-lnx$的单调减区间是(  )
A.(0,1)B.(0,1)∪(-∞,-1)C.(-∞,1)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个红色的棱长是3cm的正方体,将其适当分割成棱长为1cm的小正方体,则三面涂色的小正方体有(  )
A.6个B.8个C.16个D.27个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,满足2an+1+Sn-2=0.
(1)求数列{an}的通项公式.
(2)设bn=nan2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2sin(ωx+φ$)(ω>0,-\frac{π}{2}<$(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f(x)的图象可由函数g(x)=2sinωx的图象至少向右平移$\frac{π}{6}$个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=x(x+4).
(1)求x>0时,函数f(x)的解析式;
(2)画出函数f(x)的图象,并写出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知四组函数:①f(x)=1gx2,g(x)=2lgx;②f(x)=logaax,g(x)=${a}^{lo{g}_{a}x}$(a>0,a≠1);③f(x)=logaax(a>0,a≠1),g(x)=$\root{3}{{x}^{3}}$;④f(x)=$\frac{1}{x}$,g(x)=f-1(x).其中表示相同函数的序号是③④.

查看答案和解析>>

同步练习册答案