精英家教网 > 高中数学 > 题目详情

设函数f(x)=ax3-2bx2+cx+4d (a、b、c、d∈R)图象关于原点对称,且x=1时,f(x)取极小值-数学公式
(1)求a、b、c、d的值;
(2)当x∈[-1,1]时,图象上是否存在两点,使得过此两点处的切线互相垂直?证明你的结论;
(3)若x1,x2∈[-1,1]时,求证:.|f(x1)-f(x2)≤数学公式|.

解:(1)∵函数f(x)图象关于原点对称,∴对任意实数x,都有f(-x)=-f(x).
∴-ax3-2bx2-cx+4d=-ax3+2bx2-cx-4d,即bx2-2d=0恒成立.
∴b=0,d=0,即f(x)=ax3+cx.∴f′(x)=3ax2+c.
∵x=1时,f(x)取极小值-.∴f′(1)=0且f(1)=-
即3a+c=0且a+c=-.解得a=,c=-1.
(2)当x∈[-1,1]时,图象上不存在两点,使得过此两点处的切线互相垂直
证明:假设存在x1,x2,则f'(x1)•f'(x2)=-1
所以(x12-1)(x22-1)=-1
因为x1,x2∈[-1,1]所以x12-1,x22-1∈[-1,0]
因此(x12-1)(x22-1)≠-1
所以不存在.
(3)证明:∵f′(x)=x2-1,由f′(x)=0,得x=±1.
当x∈(-∞,-1)或(1,+∞)时,f′(x)>0;当x∈(-1,1)时,f′(x)<0.
∴f(x)在[-1,1]上是减函数,且fmax(x)=f(-1)=,fmin(x)=f(1)=-
∴在[-1,1]上,|f(x)|≤
于是x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤|f(x)max-f(x)min|=+=
故x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤
分析:(1)根据奇偶性判断b、d的值,再有在1处的极值求出a、c.
(2)用假设法证明.对于存在性问题,可先假设存在,即假设存在x1,x2,则f'(x1)•f'(x2)=-1,若出现矛盾,则说明假设不成立,即不存在;否则存在.
(3)函数在1和-1处取代极值,判断其为最值,根据两最值之差最大,证明问题.
点评:本题主要考查了函数在某点取得极值的条件,以及利用导数求闭区间上函数的最值,同时考查了分析问题的能力和转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案