精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别为a、b、c,已知向量
m
=(c-2b,a),
n
=(cosA,cosC)且
m
n

(1)求角A的大小;
(2)若
AB
AC
=4,求边BC的最小值.
分析:(1)根据正弦定理边角互化,我们易将已知条件中
m
=(c-2b,a),
n
=(cosA,cosC)且
m
n
,转化为关于A角的三角方程,解方程,即可求出A角大小.
(2)由(1)的中结论,代入余弦定理,结合基本不等式,可得两边和的最小值,代入即可求出边BC的最小值.
解答:解:(1)∵向量
m
=(c-2b,a),
n
=(cosA,cosC)且
m
n

∴(c-2b)cosA+acosC=0
∴sinCcosA+sinAcosC=2sinBcosA
∴sin(A+C)=2sinBcosA
∴sinB=2sinBcosA
∴cosA=
1
2

又∵A为三角形内角
∴A=
π
3

(2)若
AB
AC
=4,
即cb=8
由基本不等式可得
由余弦定理得a2=b2+c2-2bcsosA=b2+c2-bc=(b+c)2-3bc=(b+c)2-24
又∵(b+c)2≥4bc=32
∴a2≥8,即a≥2
2

边BC的最小值为2
2
点评:正弦定理和余弦定理是解三角形最常用的性质,大家一定要熟练掌握其定理的内容和相关推论变形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案