【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (α为参数);在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.
(Ⅰ)求C1的普通方程和C2的直角坐标方程;
(Ⅱ)若射线l:y=kx(x≥0)分别交C1 , C2于A,B两点(A,B异于原点).当 时,求|OA||OB|的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)是定义在 R上的偶函数,当 x≥0 时,f(x)=x2+ax+b 的部分图象如图所示:
(1)求 f(x)的解析式;
(2)在网格上将 f(x)的图象补充完整,并根据 f(x)图象写出不等式 f(x)≥1的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量;若在t(t>4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为(a<0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.
(1)若a=-1,t=5求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交C于A,B两点,交x轴于点D,B到x轴的距离比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若S△BOF=S△AOD , 求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,
且,
(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;
〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足 , ,则以M为圆心且与抛物线准线相切的圆的标准方程为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点D为三角形ABC边BC上一点, =3 ,En(n∈N*)为AC边上的一列点,满足 = an+1 ﹣(3an+2) ,其中实数列{an}中,an>0,a1=1,则{an}的通项公式为( )
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com