精英家教网 > 高中数学 > 题目详情
8.若存在M,使任意x∈D(D为函数f(x)的定义域),都有|f(x)|≤M,则称函数f(x)有界,函数f(x)=$\frac{1}{x}$sin$\frac{1}{x}$在x∈(0,$\frac{1}{2}$)上是否有界?

分析 首先,结合三角函数的值域,对给定的函数取绝对值,然后,转化寻找|$\frac{1}{x}$|的取值范围,从而求解问题.

解答 解:∵|sin$\frac{1}{x}$|≤1,
∴|f(x)|=|$\frac{1}{x}$sin$\frac{1}{x}$|≤|$\frac{1}{x}$|.
∵x∈(0,$\frac{1}{2}$),
∴在此范围内,无法找到一个正数M,使得|$\frac{1}{x}$|≤M.
故该函数在给定区间内没有界.

点评 本题重点考查了三角函数的图象与性质、有界的概念等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设集合A={x|x2-x-2=0},B={x|ax2-4x-4=0},若B?A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x=m2-n2,m,n∈Z},求证:
(1)任何奇数都是A的元素;
(2)偶数4k-2(k∈Z)不属于A.
(3)若α∈A,β∈A,则αβ∈A.
(4)将A中的正整数从小到大排成一列,则2012为此数列中的第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简下列各式:
(1)$\frac{cos(π-α)tan(2π-α)tan(π-α)}{sin(π+α)}$;
(2)$\frac{sin(2π+α)tan(π+α)tan(π-α)}{cos(π+α)tan(3π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.写出($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n的展开式的第r+1项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a>0,且a≠1,数列{an}的前n项和为Sn,已知数列{logaSn}是首项为0,公差为1的等差数列.
(1)求数列{an}的通项公式;
(2)设m是给定的正整数,a=2,数列{bn}满足bn=$\left\{\begin{array}{l}{{b}_{2m-n+1},1≤n≤m}\\{{a}_{n}•{a}_{n+1},m+1≤n≤2m}\end{array}\right.$.
①当m=10时,求数列{bn}的前n项和Tn(n≤20);
②设数列{cn}满足cn=$\frac{n-4}{{b}_{n}}$,试求数列{cn}中最大项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若tanα=-$\frac{4}{3}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),则tan$\frac{α}{2}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=p-1,点(an+1,an)在直线x-y+1=0上,数列{bn}对应的点(n,bn)在函数f(x)=2x-5的图象上.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{{a}_{n},{a}_{n}≤{b}_{n}}\\{{b}_{n},{a}_{n}>{b}_{n}}\end{array}\right.$,若c8为数列{cn}中唯一的最大项,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\left\{\begin{array}{l}{-1,-2≤x≤0}\\{x-1,0<x≤2}\end{array}\right.$,若函数g(x)=f(x)-ax(-2≤x≤2)是偶函数,则f[g(a)]=-1.

查看答案和解析>>

同步练习册答案