【题目】已知函数,
(1)用定义证明:在R上是单调减函数;
(2)若是奇函数,求值;
(3)在(2)的条件下,解不等式
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,在x=0处的切线与直线3x+y=0平行.
(1)求f(x)的解析式;
(2)已知点A(2,m),求过点A的曲线y=f(x)的切线条数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在,使成立,则称为的
不动点.已知函数.
(1)当时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若f(x)的两个不动点为,且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是( )
A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学联盟举行了一次“盟校质量调研考试”活动.为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为100分,得分取正整数,抽取学生的分数均在之内)作为样本(样本容量为n)进行统计.按照,,,, 的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在,的数据).
(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;
(Ⅱ)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“省级学科基础知识竞赛”,求所抽取的2名学生中恰有一人得分在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要产生[-3,3]上的均匀随机数y,现有[0,1]上的均匀随机数x,则y可取为( )
A. -3x B. 3x
C. 6x-3 D. -6x-3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com