精英家教网 > 高中数学 > 题目详情

数列{an}的首项为3,{bn}为等差数列,已知b1=2,b3=6,bn=an+l-an(n∈N*),则a6=


  1. A.
    30
  2. B.
    33
  3. C.
    35
  4. D.
    38
B
分析:先确定{bn}的通项公式,可得an+l-an=2n,由此可求a6的值.
解答:∵{bn}为等差数列,b1=2,b3=6,
∴{bn}的公差为2
∴bn=2+2(n-1)=2n
∴an+l-an=2n
∵数列{an}的首项为3,
∴a2=a1+2=5,a3=a2+4=9,a4=a3+6=15,a5=a4+8=23,a6=a5+10=33
故选B.
点评:本题考查等差数列的通项公式,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列an的首项为a(a>0),它的前n项的和是Sn
(1)若数列an是等差数列,公差为d,d≠0,且数列
Sn
an
也是等差数列,①求d;②求证:∑i=1n
2Si 
a
n2+2n
2

(2)数列Sn是公比为q的等比数列,且q≠1,不等式Sn.≥kan对任意正整数n都成立,求k的值或k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若b3=-2,b10=12,则a8=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:xy-2kx+k2=0与直线l:x-y+8=0有唯一公共点,而数列{an}的首项为a1=2k,且当n≥2时点(an-1,an)恒在曲线C上,数列{bn}满足关系bn=
1an-2

①求k的值;
②求证数列{bn}是等差数列;
③求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的首项为1,{bn}为等比数列且bn=
an+1an
,若b3=4,b6=32,则a5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若则b3=-2,b10=12,则a10=(  )
A、10B、3C、18D、21

查看答案和解析>>

同步练习册答案