【题目】已知函数的定义域为,若对于分别为某个三角形的边长,则称为“三角形函数”.给出下列四个函数:
①;②;③;④.其中为“三角形函数”的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】分析:利用“三角形函数”的定义,分别判断所给的四个函数,能求出结果找到答案.
详解:对于①,f(x)=lnx(e2≤x≤e3),
对于a,b,c∈[e2,e3],f(a),f(b),f(c)∈[2,3],
∴f(a),f(b),f(c)分别为某个三角形的边长,故①是“三角形函数”;
在②中,f(x)=4﹣cosx,对于a,b,c∈D,f(a),f(b),f(c)∈[3,5],
∴f(a),f(b),f(c)分别为某个三角形的边长,故②是“三角形函数”;
在③中, ,对于a,b,c∈(1,4),f(a),f(b),f(c)∈(1,2),
∴f(a),f(b),f(c)为某个三角形的边长,故③是“三角形函数”;
在④中, ,是一个定义域内的增函数,对于a,b,c∈D,f(a),f(b),f(c)∈(0,1),
∴f(a),f(b),f(c)不一定是某个三角形的边长,如:f(a)=0.1, f(b)=0.1 f(c)=0.8最短两边之和小于第三边,故④不是“三角形函数”.
故选C.
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在, , , , , (单位:克)中,其频率分布直方图如图所示.
(1)按分层抽样的方法从质量落在, 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:
A.所有蜜柚均以40元/千克收购;
B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列的前n项和记为,,数列满足:
(1)求数列,的通项公式;
(2)数列满足,求数列的前n项和;
(3)若对任意正整数n都成立,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】语文中有回文句,如:“上海自来水来自海上”,倒过来读完全一样。数学中也有类似现象,如:88,454,7337,43534等,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”!
二位的回文数有11,22,33,44,55,66,77,88,99,共9个;
三位的回文数有101,111,121,131,…,969,979,989,999,共90个;
四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;
由此推测:11位的回文数总共有_________个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的准线与轴交于,抛物线的焦点,以为焦点,离心率的椭圆与抛物线的一个交点为;自引直线交抛物线于两个不同的点,设.
(1)求抛物线的方程椭圆的方程;
(2)若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,,求的值域;
(2)当时,求的最小值;
(3)是否存在实数、,同时满足下列条件:① ;② 当的定义域为时,其值域为.若存在,求出、的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com