精英家教网 > 高中数学 > 题目详情

设集合W是满足下列两个条件的无穷数列{an}的集合:①对任意n∈N+数学公式≤an+1,恒成立;②对任意n∈N+,存在与n无关的常数M,使an≤M恒成立.
(Ⅰ)若{an}是等差数列,Sn是其前n项的和,且a3=4,S3=18,试探究数列{Sn}与集合W之间的关系;
(Ⅱ)设数列{bn}的通项公式为bn=5n-2n,且{bn}∈W,求M的取值范围.

解:(Ⅰ)设等差数列{an}的公差是d,则
,解得,(2分)
∴Sn=na1+d=-n2+9n,
-Sn+1====-1<0
∴得<Sn+1,适合条件①.(5分)
又Sn=-n2+9n=-+
∴所以当n=4或n=5时,Sn取得最大值20,即Sn≤20,适合条件②.(7分)
综上,{Sn}∈W.(8分)
(Ⅱ)∵=5(n+1)-2n+1-5n+=5-2n
∴当n≥3时,bn+1-bn<0,此时数列{bn}单调递减;(11分)
当n=1,2时,bn+1-bn>0,即b1<b2<b3,(12分)
因此数列{bn}中的最大项是b3=7,(13分)
∴M≥7,即M的取值范围是[7,+∞).(14分)
分析:(Ⅰ)首先由已知a3=4,S3=18再根据an=a1+(n-1)d,可求出a1、d及Sn,然后根据等差数列的求和公式求出sn,比较得的正负,看是否符合条件①;再由Sn的公式判断是否符合条件②;若都否和,则{Sn}∈W.
(Ⅱ)首先根据已知条件{bn}∈W知{bn}符合条件②,故必须求出{bn}的最大值,因而由bn+1-bn=5(n+1)-2n+1-5n+=5-2n,当n≥3时,bn+1-bn<0,此时数列{bn}单调递减,当n=1,2时,bn+1-bn>0,b1<b2<b3,因此可以得出数列{bn}中的最大项是b3=7,进而可知M≥7.
点评:本题主要考等差数列的公式及等差数列和的公式的应用以及集合之间的关系和最值问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合W是满足下列两个条件的无穷数列{an}的集合:①
an+an+22
an+1
;②an≤M,其中n∈N*,M是与n无关的常数.
(1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,证明:{Sn}∈W
(2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,求M的取值范围;
(3)设数列{cn}的各项均为正整数,且{cn}∈W,证明:cn<cn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合W是满足下列两个条件的无穷数列{an}的集合:①对任意n∈N+
an+an+22
≤an+1,恒成立;②对任意n∈N+,存在与n无关的常数M,使an≤M恒成立.
(Ⅰ)若{an}是等差数列,Sn是其前n项的和,且a3=4,S3=18,试探究数列{Sn}与集合W之间的关系;
(Ⅱ)设数列{bn}的通项公式为bn=5n-2n,且{bn}∈W,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合W是满足下列两个条件的无穷数列{an}的集合:①
an+an+22
≤an+1,②an≤M.其中n∈N+,M是与n无关的常数.
(1)设数列{bn}的通项为bn=5n-2n,证明:{bn}∈W;
(2)若{an}是等差数列,Sn是其前n项的和,a4=2,S4=20,证明:{Sn}∈W并求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)设集合W是满足下列两个条件的无穷数列{an}的集合:①
an+an+2
2
an+1
;②an≤M,其中n∈N*,M是与n无关的常数.现给出下列的四个无穷数列:(1)an=2n-n2;(2)an=3n-2n;(3)an=2n;(4)an=3-(
1
3
)n
,写出上述所有属于集合W的序号
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合W是满足下列两个条件的无穷数列{an}的集合:①
an+an+2
2
an+1
②an≤M,其中n∈N*,M是与n无关的常数
(1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,试探究{Sn}与集合W之间的关系;
(2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,M的最小值为m,求m的值;
(3)在(2)的条件下,设Cn=
1
5
[bn+(m-5)n]+
2
,求证:数列{Cn}中任意不同的三项都不能成为等比数列.

查看答案和解析>>

同步练习册答案