精英家教网 > 高中数学 > 题目详情
6.下列四个结论正确的是(  )
A.lg2•lg3=lg5B.若sinθ=$\frac{1}{2}$,则θ=30°
C.$\root{n}{{a}^{n}}$=aD.logax-logay=loga$\frac{x}{y}$(x>0,y>0)

分析 根据对数的运算性质判断A,D,根据三角函数值判断B,根据根指数判断C.

解答 解:lg2•lg3≠lg5,
若sinθ=$\frac{1}{2}$,则θ=30°+k•360°或150°+k•360°,
$\root{n}{{a}^{n}}$=a,当n为偶数时应该为$\root{n}{{a}^{n}}$=|a|,
logax-logay=loga$\frac{x}{y}$(x>0,y>0),
故选:D

点评 本题考查了对数的运算性质,指数幂的额性质,以及三角函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.
(1)直方图中的a3
(2)在这些购物者中,消费金额在区间[0.4,0.7]内的购物者的人数7500.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一次奥运会比赛中,抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如表:
运动员第1次第2次第3次第4次第5次
8.79.19.08.99.3
8.99.09.18.89.2
试用统计学知识分析甲、乙两位射击运动员的5次训练成绩的稳定性参考公式:方差s2=$\frac{1}{n}$[(x1-x)2+(x2-x)2+…+(xn-x)2],其中x为x1,x2,…,xn的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(3x+1)的定义域为[1,7],则函数f(x)的定义域为[4,22].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={x|-3≤x≤4},B={x|2m-1<x<m+1}
(1)当m=1时,求A∩B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知几何体A-BCED[如图(1)]的三视图如图(2)所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,已知几何体A-BCED的体积为16.

(1)求实数a的值;
(2)将直角三角形ABD绕斜边AD所在直线旋转一周,求该旋转体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知甲、乙两组数据如茎叶图所示,若它们的中位数和平均数都相同,且ma+nb=1(a,b∈R+),则$\frac{1}{2a}+\frac{3}{b}$的最小值为(  )
A.36B.32C.$4\sqrt{6}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\frac{tanα}{tanα-1}=-1$,求下列各式的值
(1)$\frac{sinα-3cosα}{sinα+cosα}$
(2)若α 是第三象限角,求$cos(-π+α)+cos(\frac{π}{2}+α)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ax3-$\frac{3}{2}$x2+1存在唯一的零点x0,且x0<0,则实数a的取值范围是(  )
A.(-∞,-$\frac{\sqrt{2}}{2}$)B.(-∞,-2)C.($\frac{1}{2}$,+∞)D.($\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

同步练习册答案