精英家教网 > 高中数学 > 题目详情
8.如图是某班50位学生期中考试化学成绩的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则成绩在[70,90)内的频数为(  )
A.27B.30C.32D.36

分析 由频率分布直方图先求出成绩在[70,90)内的频率,由此能求出成绩在[70,90)内的频数.

解答 解:由频率分布直方图得成绩在[70,90)内的频率为:
1-(0.006+0.006+0.01+0.006)×10=0.72,
∴成绩在[70,90)内的频数为:50×0.72=36.
故选:D.

点评 本题考查频数的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={0,1,2},集合B={x|x=2n+1,n∈A},则A∩B=(  )
A.{0,1,2,3,5}B.{1,2,3}C.{0,1}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,若复数-3i(a+i)(a∈R)的实部与虚部相等,则a=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在矩形ABCD中,E,F分别为AD上的两点,已知∠CAD=θ,∠CED=2θ,∠CFD=4θ,AE=600,EF=200$\sqrt{3}$,则CD=300.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.随机抽取某中学高三年级甲,乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图,其中甲,乙两班各有一个数据被污损.
(1)若已知甲班同学身高众数有且仅有一个为179,乙班同学身高的中位数为172,求甲,乙两班污损处的数据;
(2)在(1)的条件下,求甲,乙两班同学身高的平均值;
(3)①若已知甲班同学身高的平均值大于乙班同学身高的平均值,求甲班污损处的数据的值;
②在①的条件下,从乙班这10名同学中随机抽取两名身高高于170cm的同学,求身高为181cm的同学被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A,B,P是直线l上三个相异的点,平面内的点O∉l,若正实数x,y满足$4\overrightarrow{OP}=2x\overrightarrow{OA}+y\overrightarrow{OB}$,则$\frac{1}{x}+\frac{1}{y}$的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{3+2\sqrt{2}}}{4}$C.$\frac{{3+\sqrt{2}}}{4}$D.$\frac{{3-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知A,B,C,D四点共圆,BA,DC的延长线交于点M,CA,DB的延长线交于点F,连接FM,且FM⊥MD.过点B作FD的垂线,交FM于点E
(Ⅰ)证明:△FAB∽△FDC
(Ⅱ)证明:MA•MB=ME•MF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-x2+2blnx,g(x)=x+$\frac{1}{x}$两函数有相同极值点
(1)求实数b的值;
(2)若对于?x1,x2∈[${\frac{1}{e}$,3](e为自然对数的底数),不等式$\frac{{f({x_1})-g({x_2})}}{k-1}$≤1恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案