精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

如图6,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,EF⊥PB交PB于点F.

 

 

(Ⅰ) 若PD=DC=2求三棱锥A-BDE的体积;

(Ⅱ) 证明PA∥平面EDB;

(Ⅲ) 证明PB⊥平面EFD.

 

【答案】

解:(Ⅰ)设CD的中点为H,连结EH,

依题意得EH//PD,且EH=PD=1,因为PD⊥底面ABCD,所以EH⊥底面ABCD,故三棱锥E-ABD的高是EH,其体积为

因为,所以三棱锥A-BDE的体积为.

(Ⅱ)证明:连结AC,AC交BD于O,连EO,∵底面 ABCD是正方形,∴点O是AC中点,在△PAC中,EO是中位线,∴PA∥EO,而EO平面EDB,且PA平面EDB,∴PA∥平面EDB.

(Ⅲ) 证明:∵PD⊥底面ABCD且DC底面ABCD,

∴PD⊥DC.

∵PD=DC可知△PDC是等腰直角三角形,而DE是斜边PC的中线,

∴DE⊥PC.①

同样由PD⊥底面ABCD,得PD⊥BC,

∵底面ABCD是正方形有DC⊥BC,

∴BC⊥平面PDC,而DE平面PDC,

∴BC⊥DE.②

由①②得DE⊥平面PBC,而PB面PBC,

∴DE⊥PB又EF⊥PB且DE∩EF=E,

∴PB⊥平面EFD.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案