精英家教网 > 高中数学 > 题目详情
11.(理)函数$f(x)=\frac{9}{{{x^2}+1}}+\frac{4}{{4-{x^2}}}$(-2<x<2)的最小值为5.

分析 运用乘1法,可得f(x)=$\frac{1}{5}$•5($\frac{9}{1+{x}^{2}}$+$\frac{4}{4-{x}^{2}}$)=$\frac{1}{5}$[(1+x2)+(4-x2)]($\frac{9}{1+{x}^{2}}$+$\frac{4}{4-{x}^{2}}$),展开后再用基本不等式,即可得到所求最小值.

解答 解:f(x)=$\frac{1}{5}$•5($\frac{9}{1+{x}^{2}}$+$\frac{4}{4-{x}^{2}}$)
=$\frac{1}{5}$[(1+x2)+(4-x2)]($\frac{9}{1+{x}^{2}}$+$\frac{4}{4-{x}^{2}}$)
=$\frac{1}{5}$[13+$\frac{9(4-{x}^{2})}{1+{x}^{2}}$+$\frac{4(1+{x}^{2})}{4-{x}^{2}}$]
≥$\frac{1}{5}$(13+2$\sqrt{9•4}$)=5.
当且仅当2(1+x2)=3(4-x2),即x=±$\sqrt{2}$时,
f(x)取得最小值5.
故答案为:5.

点评 本题考查函数的最值的求法,注意运用乘1法和基本不等式,考查运算能力,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在Rt△ABC中,点D是斜边AB上的点,且满足∠ACD=60°,∠BCD=30°,设AC=x,BC=y,DC=2,则x,y满足的相等关系式是y=$\frac{\sqrt{3}x}{x-1}$,(x>1,y>$\sqrt{3}$),△ABC面积的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.近期,双十中学首届游泳比赛在新建成的韩振东游泳馆中举行,在前期报名中,同学们也都表现出了极大的兴趣.为了确保赛事的顺利进行,学校邀请了湖里区游泳协会的相关人员前来协助,还在学校征招了8名同学当志愿者,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.经过直线$l:x+y-2\sqrt{2}=0$上的点P,向圆O:x2+y2=1引切线,切点为A,则切线长|PA|的最小值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an},满足a1=1,an-an-1=n,则a10=(  )
A.45B.50C.55D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知不等式x(x+a)≤b的解集是{x|0≤x≤1},那么a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,G是EF的中点,AG=1
(1)证明:AG⊥平面ABCD;
(2)求直线BF与平面ACE所成角的正弦值;
(3)判断线段AC上是否存在一点M,使MG∥平面ABF?若存在,求出$\frac{AM}{AC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线l的方程为3x-2y+6=0,则直线l在x轴上的截距是-2;y轴上的截距是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=loga(ax2-2x+1)在区间[2,3]是减函数,则a取值范围为($\frac{3}{4}$,1).

查看答案和解析>>

同步练习册答案