精英家教网 > 高中数学 > 题目详情

【题目】某产品的包装纸可类比如图所示的平面图形,其可看作是由正方形和等腰梯形拼成,已知,在包装的过程中,沿着将正方形折起,直至,得到多面体分别为中点.

1)证明:平面

2)求四棱锥的体积.

【答案】1)证明见解析;(2

【解析】

1)连接,根据三角形中位线性质可得,由线面平行判定定理可证得结论;

2)取的中点,作,由线面垂直的判定与性质定理可证得,结合,利用线面垂直和面面垂直的判定定理可证得平面平面,由面面垂直性质可证得为所求四棱锥的高,代入棱锥体积公式可求得结果.

1)连接

分别为中点,中位线,

平面平面平面.

2)取的中点,连接,过点于点

,,四边形为平行四边形,

可知

中,有

平面平面

平面

四边形为正方形,,又平面

平面,又平面平面平面

平面平面平面

为四棱锥的高,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数都在内,在以组距为5画分数的频率分布直方图(设“”)时,发现满足.

1)试确定的所有取值,并求

2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在的参赛者评为一等奖;分数在的同学评为二等奖,但通过附加赛有的概率提升为一等奖;分数在的同学评为三等奖,但通过附加赛有的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生均参加了本次比赛,且学生在第一阶段评为二等奖.

)求学生最终获奖等级不低于学生的最终获奖等级的概率;

)已知学生都获奖,记两位同学最终获得一等奖的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某传染病疫情爆发期间,当地政府积极整合医疗资源,建立舱医院对所有密切接触者进行14天的隔离观察治疗.治疗期满后若检测指标仍未达到合格标准,则转入指定专科医院做进一步的治疗.舱医院对所有人员在入口出口时都进行了医学指标检测,若入口检测指标在35以下者则不需进入舱医院而是直接进入指定专科医院进行治疗.以下是20名进入舱医院的密切接触者的入口出口医学检测指标:

入口

50

35

35

40

55

90

80

60

60

60

65

35

60

90

35

40

55

50

65

50

出口

70

50

60

50

75

70

85

70

80

70

55

50

75

90

60

60

65

70

75

70

(Ⅰ)建立关于的回归方程;(回归方程的系数精确到0.1

(Ⅱ)如果60舱医院出口最低合格指标,那么,入口指标低于多少时,将来这些密切接触者将不能进入舱医院而是直接进入指定专科医院接受治疗.(检测指标为整数)

附注:参考数据:

参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省级示范高中高三年级对各科考试的评价指标中,有“难度系数“和“区分度“两个指标中,难度系数,区分度.

1)某次数学考试(满分为150分),随机从实验班和普通班各抽取三人,实验班三人的成绩分别为147142137;普通班三人的成绩分别为97102113.通过样本估计本次考试的区分度(精确0.01).

2)如表表格是该校高三年级6次数学考试的统计数据:

难度系数x

0.64

0.71

0.74

0.76

0.77

0.82

区分度y

0.18

0.23

0.24

0.24

0.22

0.15

①计算相关系数r,|r|<0.75时,认为相关性弱;|r|≥0.75时,认为相关性强.通过计算说明,能否利用线性回归模型描述yx的关系(精确到0.01).

ti=|xi0.74|(i=12,…,6),求出y关于t的线性回归方程,并预测x=0.75y的值(精确到0.01).

附注:参考数据:

参考公式:相关系数r,回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥中底面为直角梯形,,侧面为正三角形且平面底面分别为的中点.

1)证明:平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点的直线交抛物线于两点,线段的中点的横坐标为.

1)求抛物线的方程;

2)已知点,过点作直线交抛物线于两点,求的最大值,并求取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆节期间,滕州市实验小学举行了一次科普知识竞赛活动,设置了一等奖、二等奖、三等奖、四等奖及纪念奖,获奖人数的分配情况如图所示,各个奖品的单价分别为:一等奖50元、二等奖20元、三等奖10元,四等奖5元,纪念奖2元,则以下说法中不正确的是(

A.获纪念奖的人数最多B.各个奖项中二等奖的总费用最高

C.购买奖品的费用平均数为6.65D.购买奖品的费用中位数为5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,己知是椭圆的右焦点,是椭圆上位于轴上方的任意一点,过作垂直于的直线交其右准线于点.

1)求椭圆的方程;

2)若,求证:直线与椭圆相切;

3)在椭圆上是否存在点,使四边形是平行四边形?若存在,求出所有符合条件的点的坐标:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案