精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)|2x1||x4|.

(1)解不等式f(x)>2

(2)若函数f(x)≥m恒成立,m的最大整数值.

【答案】(1)见解析;(2)1;(3)

【解析】试题分析:

1)利用绝对值的定义去绝对值符号,化函数为分段函数形式,然后分段解不等式可得结论,也可作出函数的图象与直线,从图象观察出不等式的解;

2作出函数图象可求得的最小值,从而可得的范围,在其中取最大整数

试题解析:

(1)y|2x1||x4|,则

y

作出函数y|2x1||x4|的图像,它与直线y2的交点为(7,2)(2)

所以|2x1||x4|>2的解集为(,-7)(,+∞)

(2)由函数y|2x1||x4|的图像可知,当x=-时,y|2x1||x4|取得最小值-. 由题m<=-9/2,m的最大整数值-5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2.

(I)若f(x)在x=1处有极值10,求a,b的值;

(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为

1)求曲线的直角坐标方程并指出其形状;

2)设是曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与反比例函数的图象交于B、C两点,B(2,m)且m<2,正方形ABCD的顶点A、D在坐标轴上。

⑴ 求 的值;

⑵ 直接写出时, 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=

(1)求证:平面PBD⊥平面PAC;

(2)求三棱锥P--BDC的体积。

(3)在线段PC上是否存在一点E,使PC⊥平面EBD成立.如果存在,求出EC的长;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知)的图像关于坐标原点对称。

1)求的值,并求出函数的零点;

2)若函数内存在零点,求实数的取值范围

3)设,若不等式上恒成立求满足条件的最小整数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.

(Ⅰ)估计这次月考数学成绩的平均分和众数;

(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数在定义域内给定区间上存在),满足,则称函数上的“平均值函数”, 是它的一个均值点.如上的平均值函数,0就是他的均值点.

(1)判断函数在区间上是否为平均值函数?若是,求出它的均值点;若不是,请说明理由;

(2)若函数是区间上的平均值函数,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形ABCD中,AB=1,AD=。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.

(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.

(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.

查看答案和解析>>

同步练习册答案