精英家教网 > 高中数学 > 题目详情
14.函数f(x)=loga(4x-x2-3)(0<a<1)的单调增区间是(2,3).

分析 令t=4x-x2-3>0,求得函数的定义域为(1,3),且f(x)=g(t)=logat,本题即求函数t在定义域内的减区间.再利用二次函数的性质可得结论.

解答 解:令t=4x-x2-3>0,求得1<x<3,故函数的定义域为(1,3),
且f(x)=g(t)=logat,本题即求函数t在定义域内的减区间.
再利用二次函数的性质可得,t在定义域内的减区间为(2,3),
故答案为:(2,3).

点评 本题主要考查复合函数的单调性,指数函数、对数函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2-2ax+3a-4在区间(-1,1)上有一个零点.
(1)求实数a的取值范围;
(2)若a=1,用二分法求f(x)=0在区间(-1,1)上的根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=x+$\frac{t}{x}$有如下性质:如果常数t>0,那么该函数在$(0,\sqrt{t}]$上是减函数,在$[\sqrt{t},+∞)$上是增函数.
(1)已知f(x)=$\frac{{{x^2}-2x-4}}{x+2}$,x∈[-1,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[-1,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正方体ABCD-A1B1C1D1,过A1点可作    条直线与直线AC和BC1都成60°角(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在各棱长均相等的三棱柱ABC-A1B1C1中,∠A1AC=60°,D为AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:平面ABB1A1⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等式$\sqrt{\frac{x}{x-2}}=\frac{\sqrt{x}}{\sqrt{x-2}}$成立的条件是(  )
A.x≠2B.x>0C.x>2D.0<x<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$f(x)={x^{\frac{1}{3}}}-{({\frac{1}{2}})^x}$,其零点所在区域为(  )
A.$({0,\frac{1}{3}})$B.$({\frac{1}{3},\frac{1}{2}})$C.$({\frac{1}{2},1})$D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,满足an=3an-1+2,a1=2.
(1)证明{an+1}为等比数列.
(2)求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=log(2-a)x在定义域内是减函数,则a的取值范围是(1,2).

查看答案和解析>>

同步练习册答案