精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)写出函数的解析式;

(2)若直线与曲线有三个不同的交点,求的取值范围;

(3)若直线 与曲线内有交点,求的取值范围.

【答案】(1) (2) (3)

【解析】

1)先分类讨论求出|f(x)|的解析式,即得函数的解析式;2)当时,直线与曲线只有2个交点,不符题意.当时,由题意得,直线与曲线内必有一个交点,且在的范围内有两个交点.由消去.令,写出应满足条件解得;(3)由方程组消去.由题意知方程在内至少有一个实根,设两根为,不妨设.由根与系数关系得.代入求解即可.

(1)当,得,此时

,得,此时

(2)当时,直线与曲线只有2个交点,不符题意.

时,由题意得,直线与曲线内必有一个交点,且在的范围内有两个交点.

,消去.

,则应同时满足以下条件:

解得,所以的取值范围为

(3)由方程组,消去.

由题意知方程在内至少有一个实根,设两根为

不妨设,由根与系数关系得

当且仅当时取等.

所以的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知(a>0,且a≠1).

(1)讨论f(x)的奇偶性;

(2)a的取值范围,使f(x)>0在定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在(0+∞)上的函数 fx),对于任意正实数 ab,都有 fab)=fa+fb)﹣1f2)=0,且当 x1 时,fx)<1

1)求 f1)及的值;

2)求证:fx)在(0+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足fx)=f(2-x),且f(1)=6,f(3)=2.

(1)求fx)的解析式

(2)是否存在实数m,使得在[-1,3]上fx)的图象恒在直线y=2mx+1的上方?若存在,求m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(1+x)﹣ln(1﹣x),给出以下四个命题: ①x∈(﹣1,1),有f(﹣x)=﹣f(x);
x1 , x2∈(﹣1,1)且x1≠x2 , 有
x1 , x2∈(0,1),有
x∈(﹣1,1),|f(x)|≥2|x|.
其中所有真命题的序号是(
A.①②
B.③④
C.①②③
D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;

A

B

合计

认可

不认可

合计

(Ⅲ)若从此样本中的A城市和B城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自B城市的概率是多少?
附:参考数据:
(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数a,b,c,函数f(x)=|x+a||x+b|. (Ⅰ)若a=1,b=3,解关于x的不等式f(x)+x+1<0;
(Ⅱ)求证:f(1)f(c)≥16abc.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,点E在CD上,DE=2EC.
(Ⅰ)求证:AC⊥BE;
(Ⅱ)若二面角E﹣BA﹣D的余弦值为 ,求三棱锥A﹣BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 . (I)求曲线C2的直角坐标系方程;
(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.

查看答案和解析>>

同步练习册答案