精英家教网 > 高中数学 > 题目详情
4.求下列各式的值:
(1)tan405°-sin450°+cos750°;
(2)mtan0-ncos$\frac{5}{2}$π-psin3π-qcos$\frac{11}{2}$π+rsin(-5π).

分析 直接利用三角函数的诱导公式逐一化简求值得答案.

解答 解:(1)tan405°-sin450°+cos750°
=tan45°-sin90°+cos30°=1-1+$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$;
(2)mtan0-ncos$\frac{5}{2}$π-psin3π-qcos$\frac{11}{2}$π+rsin(-5π)
=m×0-n×0-p×0-q×0+r×0=0.

点评 本题考查利用诱导公式化简求值,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.集合{α|k•180°+45°≤α≤k•180°+90°,k∈Z}中,角所表示的范围(阴影部分)正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=cos(ωx+$\frac{π}{2}$)在[0,$\frac{π}{4}$]上为增函数,则ω的取值范围为(  )
A.[-2,0)B.[-3,0)C.[-2,2]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=x2-1,那么f[f(x)]=(  )
A.x4-1B.x4+2x2C.x4+1D.x4-2x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将下列三角函数转化为锐角三角函数,并填在题中横线上:
(1)cos210°=-cos30°;
(2)sin263°42′=-sin83°42′;
(3)cos(-$\frac{π}{6}$)cos$\frac{π}{6}$; 
(4)sin(-$\frac{5}{3}$π)=sin$\frac{π}{3}$;
(5)cos(-$\frac{11}{9}$π)=-cos$\frac{π}{9}$;
(6)cos(-104°26′)=-sin14°26′;
(7)tan632°24′=-tan87°36′;
(8)tan$\frac{17π}{6}$=-tan$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“a=2”是“复数z=$\frac{a+2i}{1-i}$的对应点落在复平面的虚轴上”的 (  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果关于x的不等式|x-2|+|x-a|≥a恒成立,则a的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数z的共扼复数为$\overline{z}$,若z+$\overline{z}$=4,z•$\overline{z}$=5,且复数z在复平面上表示的点在第四象限,则z=(  )
A.2一$\sqrt{21}$iB.$\sqrt{21}$一2iC.1一2iD.2一i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={0,2,3},B={x|x=ab,a,b∈A且a≠b},则B的子集有4个.

查看答案和解析>>

同步练习册答案