精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数.

(1)若函数在区间上是单调函数,试求实数的取值范围;

(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.

【答案】(1) (2)

【解析】试题分析:(1)函数在区间上单调递增等价于在区间上恒成立,可得,函数在区间单调递减等价于在区间上恒成立,可得,综合两种情况可得结果;(2),由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,所以在区间内存在零点,同理, 在区间内存在零点,所以只需在区间内恰有两个零点即可,利用导数研究函数的单调性,结合函数单调性讨论的零点,从而可得结果.

试题解析:(1)

当函数在区间上单调递增时, 在区间上恒成立,

(其中),解得

当函数在区间单调递减时, 在区间上恒成立,

(其中),解得

综上所述,实数的取值范围是

(2)

,知在区间内恰有一个零点,

设该零点为,则在区间内不单调,

所以在区间内存在零点

同理, 在区间内存在零点

所以在区间内恰有两个零点.

由(1)知,当时, 在区间上单调递增,故在区间内至多有一个零点,不合题意.

时, 在区间上单调递减,

内至多有一个零点,不合题意;

所以

,得

所以函数在区间上单调递减,在区间上单调递增.

的两个零点为 ),

因此 ,必有

,得

所以

所以

综上所述,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆的顶点 为椭圆的左焦点且椭圆经过点.

1)求椭圆的方程

2)过椭圆的右顶点作斜率为的直线交椭圆于另一点连结并延长交椭圆于点的面积取得最大值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下:

甲:137121131120129119132123125133

乙:110130147127146114126110144146

1画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论;

2规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个求选出成绩“良好”的个数的分布列和数学期望.

(注:方差其中的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为 为参数),曲线的极坐标方程为.

(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;

(2)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABCA1B1C1的各棱长都等于2,DAC1上,FBB1的中点,且FDAC1,有下述结论:

AC1BC

=1;

③平面FAC1⊥平面ACC1A1

④三棱锥DACF的体积为.

其中正确结论的个数为(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义域为R的周期函数最小正周期为2

f(1x)f(1x)当-1≤x≤0f(x)=-x.

(1)判断f(x)的奇偶性;

(2)试求出函数f(x)在区间[12]上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数图象上不同两点 处切线的斜率分别是 ,规定为线段的长度)叫做曲线在点之间的“弯曲度”,给出以下命题:

①函数图象上两点的横坐标分别为1和2,则

②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;

③设点 是抛物线上不同的两点,则

④设曲线是自然对数的底数)上不同两点 ,且,若恒成立,则实数的取值范围是

其中真命题的序号为__________.(将所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且 .

(Ⅰ)设 ,求的单调区间及极值;

(Ⅱ)证明:函数的图象在函数的图象的上方.

查看答案和解析>>

同步练习册答案