【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.
(1)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;
(2)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图.若将该频率视为概率,分别求甲、乙两家公司一名推销员的日工资超过125元的概率.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中,错误的是( )
A.AC⊥SB
B.BC∥平面SAD
C.SA和SC与平面SBD所成的角相等
D.异面直线AB与SC所成的角和异面直线CD与SA所成的角相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,已知E,F,G,H分别是A1D1,B1C1,D1D,C1C的中点.
(1)求证:EF∥平面ABHG;
(2)求证:平面ABHG⊥平面CFED.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲乙两班各随机抽取10名同学,如图所示的茎叶图记录了这20名同学在2018年高考语文作文题目中的成绩(单位:分).已知语文作文题目满分为60分,“分数分,为及格:分数分,为高分”,若甲乙两班的成绩的平均分都是44分.
(1)求,的值;
(2)若分别从甲乙两班随机各抽取1名成绩为高分的学生,求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点与两个定点,的距离的比为.
(1)求动点的轨迹的方程;
(2)过点的直线与曲线交于、两点,求线段长度的最小值;
(3)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,对于的一个子集,若存在不大于的正整数,使得对中的任意一对元素、,都有,则称具有性质.
(1)当时,试判断集合和是否具有性质?并说明理由;
(2)当时,若集合具有性质.
①那么集合是否一定具有性质?并说明理由;
②求集合中元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种室内植物的株高(单位:)与与一定范围内的温度(单位:)有,现收集了该种植物的组观测数据,得到如图所示的散点图:
现根据散点图利用或建立关于的回归方程,令,,得到如下数据:
且与的相关系数分别为、,其中.
(1)用相关系数说明哪种模型建立关于的回归方程更合适;
(2)(i)根据(1)的结果及表中数据,求关于的回归方程;
(ii)已知这种植物的利润(单位:千元)与、的关系为,当何值时,利润的预报值最大.
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,,
相关系数,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com