精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
定义在上的奇函数,已知当时,
(1)写出上的解析式
(2)求上的最大值
(3)若上的增函数,求实数的范围。

(1)(2)当时,最大值为,当时,最大值为,当时,最大值为(3)

解析试题分析:(1)是奇函数
(2)设函数变形为对称轴,当时,最大值,当时,最大值,当时,最大值
(3)函数是增函数,对称轴
考点:求分段函数解析式最值及单调性的应用
点评:本题第二问中求最值注意参数范围的讨论

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,记
(Ⅰ)判断的奇偶性,并证明;
(Ⅱ)对任意,都存在,使得.若,求实数的值;
(Ⅲ)若对于一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线轴的垂线,垂足分别为

(1)写出的单调递减区间(不必证明);(4分)
(2)设点的横坐标,求点的坐标(用的代数式表示);(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)已知函数
(Ⅰ)若上的最小值是,试解不等式
(Ⅱ)若上单调递增,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知是定义在[-1,1]上的奇函数,当,且时有.
(1)判断函数的单调性,并给予证明;
(2)若对所有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分) 已知函数f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的单调递减区间;
(2)求f(x)图象上与原点最近的对称中心的坐标;
(3)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
定义在上的偶函数,已知当时的解析式
(Ⅰ)写出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)(1)已知函数,问方程在区间[-1,0]内是否有
解,为什么?
(2)若方程在(0,1)内恰有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=>2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?  (10分) 

查看答案和解析>>

同步练习册答案