精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点△DAB≌△DCB,EA=EB=AB=1,PA=
32
,连接CE并延长交AD于F.
(1)求证:AD⊥平面CFG;
(2)求三棱锥P-ABD外接球的体积.
分析:(1)根据线面垂直的判定定理证明AD⊥平面CFG;
(2)根据条件求三棱锥P-ABD外接球的半径,进而求球的体积.
解答:解:(1)在△ABD中,∵E是BD的中点,
∴EA=EB=ED=AB=1,∴AE=
1
2
BD

可得∠BAD=
π
2
,且∠ABE=∠AEB=
π
3

∵△DAB≌△DCB,
∴△EAB≌△ECB,
从而有∠FED=∠FEA=∠AEB=
π
3

故EF⊥AD,AF=FD,
又∵△PAD,中,PG=GD,
∴FG是△PAD的中位线,
∴FG∥PA.
又PA⊥平面ABCD,
∴FG⊥平面ABCD,
∵AD?平面ABCD,
∴GF⊥AD,
又∵EF,FG是平面CFG内的相交直线,
∴AD⊥平面CFG.
(2)∵PA、PB、PD两两垂直,可补形成长方体,
其外接球2R=
12+(
3
)
2
+(
3
2
)
2
=
5
2

∴R=
5
4

V=
4
3
πR3=
125π
48
点评:本题主要考查线面垂直的判定以及空间几何体的体积,要求熟练掌握相应的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案