精英家教网 > 高中数学 > 题目详情
判断下列函数的奇偶性:
(1)f(x)=x4-x2+8;              (2)f(x)=x+
1x3-x
分析:(1)先看定义域R,关于原点对称,且有f(-x)=f(x),故是偶函数.
(2)定义域 {x|x≠-1且x≠0且x≠1}关于原点对称,f(-x)=-f(x)故是奇函数.
解答:证明:(1)函数f(x)=x4-x2+8在定义域R中有:f(-x)=(-x)4-(-x)2+8=x4-x2+8=f(x),
则函数f(x)在R上为偶函数.
(2)函数f(x)=x+
1
x3-x
在定义域 {x|x≠-1且x≠0且x≠1}中有,f(-x)=-x+
1
(-x)3-(-x)
=-x+
1
-x3+x
=-(x+
1
x3-x
)=-f(x)

则函数f(x)在{x|x≠-1且x≠0且x≠1}中为奇函数.
点评:具备奇偶性的函数,其定义域必关于原点对称,再依据奇函数、偶函数的定义做出判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(A)f(x)=
0(x为无理数)
1(x为有理数)
 

(B)f(x)=ln(
1+x2
-x)
 

(C)f(x)=
1+sinx-cosx
1+sinx+cosx
 

(D)f(x)=
x
ax-1
+
x
2
,(a>0,a≠0)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性.
(1)y=lg
tanx+1
tanx-1

(2)f(x)=lg(sinx+
1+sin2x
)

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(1)y=x4+
1x2
;         (2)f(x)=|x-2|-|x+2|

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,并说明理由.
(1)f(x)=
1-x2
|x+3|-3
;  (2)f(x)=x2-|x-a|+2(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,并证明:
(1)f(x)=x+
1x
           (2)f(x)=x4-1.

查看答案和解析>>

同步练习册答案