精英家教网 > 高中数学 > 题目详情
15.正方形ABCD的对角线AC在直线x+2y-1=0上,点A,B的坐标分别为A(-5,3),B(m,0)(m>-5).
(1)求实数m的值;
(2)求点C、D的坐标.

分析 (1)根据正方形中对角线互相垂直,写出直线BD的方程,与直线AC联立,求出正方形的中心点E的坐标,再利用|AE|=|BE|,列出方程求出m的值;
(2)根据E是AC、BD的中点坐标,列出方程组,分别求出点C、D的坐标.

解答 解:(1)正方形ABCD中,BD⊥AC,且kAC=-$\frac{1}{2}$,
∴kBD=-$\frac{1}{{k}_{BD}}$=2,
∴直线BD的方程为y=2(x-m);
与直线AC:x+2y-1=0联立,
解得$\left\{\begin{array}{l}{x=\frac{4m}{5}+\frac{1}{5}}\\{y=\frac{-2m}{5}+\frac{2}{5}}\end{array}\right.$,
即正方形的中心点E的坐标为($\frac{4}{5}$m+$\frac{1}{5}$,-$\frac{2}{5}$m+$\frac{2}{5}$);
又|AE|=|BE|,
∴$\sqrt{{(\frac{4}{5}m+\frac{1}{5}+5)}^{2}{+(-\frac{2}{5}m+\frac{2}{5}-3)}^{2}}$=$\sqrt{{(\frac{4}{5}m+\frac{1}{5}-m)}^{2}{+(-\frac{2}{5}m+\frac{2}{5})}^{2}}$,
两边平方,整理得m2+18m+56=0,
解得m=-4或m=-14(因m>-5,舍去),
∴m的值是-4;
(2)正方形ABCD中,点B的坐标为(-4,0),
设顶点C,D的坐标分别为(x1,y1),(x2,y2),
∵点E的坐标为(-3,2),E为AC中点,
∴$\left\{\begin{array}{l}{\frac{-5{+x}_{1}}{2}=-3}\\{\frac{3{+y}_{1}}{2}=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{y}_{1}=1}\end{array}\right.$,
即点C的坐标为(-1,1),
同理可得点D的坐标为(-2,4).

点评 本题考查了直线方程的应用问题,也考查了直线的位置关系与对称的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.log59•log225•log34=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在六棱柱ABCDEFA1B1C1D1E1F1中.
(1)化简$\overrightarrow{{{A}_{1}F}_{1}}$-$\overrightarrow{EF}$+$\overrightarrow{AB}$+$\overrightarrow{{CC}_{1}}$,并在图中标出化简结果的向量.
(2)化简$\overrightarrow{AB}$+$\overrightarrow{{CC}_{1}}$+$\overrightarrow{DE}$+$\overrightarrow{{{B}_{1}D}_{1}}$,并在图中标出化简结果的向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα=3,求下列各式的值:
(1)$\frac{4sin(α-2π)-cos(4π+α)}{3sin(α-2π)-5cos(α-6π)}$.
(2)$\frac{si{n}^{2}α-2sinαcosα-co{s}^{2}α}{4co{s}^{2}α-3si{n}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1内一点P(3,1),且被这点平分的弦所在直线的方程是3x+4y-13=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合M={(x.y)|x2+y2-6x+8y-39=0},N{(x,y)|x2+y2=r2},若M∩N=∅,则正数r的取值范围是(  )
A.0<r≤5B.0<r<5C.r>13D.r>13或0<r<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列条件,能使sinα+cossα>1成立的是(  )
A.0<α<πB.0<α<$\frac{3π}{2}$C.0<α<$\frac{π}{2}$D.$\frac{π}{4}$≤α≤$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a为实参数,试讨论y=asin2x+2cosx-a-2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题正确的个数是(  )
(1)命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为:“若方程x2+x-m=0无实根,则m≤0”
(2)对于命题p:“?x∈R使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”
(3)“x=1”是“x2-3x+2=0”的充分不必要条件
(4)若p∧q为假命题,则p,q均为假命题.
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案