精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在等边中,O为边的中点,DE的高线上的点,且.若以A,B为焦点,O为中心的椭圆过点D,建立适当的直角坐标系,记椭圆为M

(1)求椭圆M的方程;
(2)过点E的直线与椭圆M交于不同的两点P,Q,点P在点E, Q
间,且,求实数的取值范围.
解:(1)建立如图所示的直角坐标系,由于

       

设椭圆方程为
   
即椭圆方程为……6分
(2)设
 ,即 
  ①  ……7分
都在椭圆上 ②              ………………8分
由①②得
消去  …………10分
,
之间,又
范围为.                               ………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若椭圆)和椭圆:   
)的焦点相同且.给出如下四个结论:
①椭圆和椭圆一定没有公共点;          ②
;                     ④.
其中,所有正确结论的序号是(   )
A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设椭圆的焦点分别为,抛物线:的准线与轴的交点为,且
(I)求的值及椭圆的方程;
(II)过分别作互相垂直的两直线与椭圆分别交于四点(如图),
求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆),其焦距为,若),则称椭圆为“黄金椭圆”.
(1)求证:在黄金椭圆)中,成等比数列.
(2)黄金椭圆)的右焦点为为椭圆上的
任意一点.是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆)的左、右焦点分别是,以为顶点的菱形的内切圆过焦点.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
知椭圆的离心率为其左、右焦点分别为,点P是坐标平面内一点,且(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点且斜率为k的动直线交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆C:的左焦点和右焦点,O是坐标系原点, 且椭圆C的焦距为6, 过的弦两端点所成⊿的周长是.
(Ⅰ).求椭圆C的标准方程.
(Ⅱ)已知点是椭圆C上不同的两点,线段的中点为.
求直线的方程;
(Ⅲ)若线段的垂直平分线与椭圆C交于点,试问四点是否在同一个圆上,若是,求出该圆的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率等于(    ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是椭圆上一动点,则的最大值是____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数+3x+b的图象与x轴有三个不同交点,且交点的横坐标分别可作为抛物线、双曲线、椭圆的离心率,则实数a的取值范围是     .

查看答案和解析>>

同步练习册答案