【题目】对于函数、、,如果存在实数、使得,那么称为、的生成函数.
(1)若,,,则是否分别为、的生成函数?并说明理由;
(2)设,,,,生成函数,若不等式在上有解,求实数的取值范围;
(3)设,取,,生成函数图象的最低点坐标为,若对于任意正实数、且,试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.
【答案】(1)是;理由见解析;(2);(3)存在,且.
【解析】
(1)利用两角和的正弦公式将函数的解析式展开,利用题中的定义可判断出是、的生成函数;
(2)先得出函数,根据题意得出在上有解,设,利用参变量分离法得出,可得出,求出函数在上的最大值,即可得出实数的取值范围;
(3)先得出函数,利用题意以及基本不等式得出,,然后利用基本不等式求出在条件下的最小值,即可得出的取值范围,即可求出的最大值.
(1),因此,是分别为、的生成函数;
(2)由题意可得,
由于不等式在上有解,即,
化简得,
令,则有,得,
由题意可得,由于函数在上单调递增,
所以,,.
因此,实数的取值范围是;
(3)由题意可得,
函数图象的最低点坐标为,
由基本不等式得,
当且仅当时,即当时,等号成立,则,解得,
.
.
令,由基本不等式得,
由双勾函数的单调性知,函数在上单调递减,
则,.
因此,存在最大值的常数.
科目:高中数学 来源: 题型:
【题目】某公司为了应对金融危机,决定适当进行裁员,已知这家公司现有职工人(,且为10的整数倍),每人每年可创利100千元,据测算,在经营条件不变的前的提下,若裁员人数不超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利1千元(即若裁员人,留岗员工可多创利润千元);若裁员人数超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利2千元(即若裁员人,留岗员工可多创利润千元),为保证公司的正常运转,留岗的员工数不得少于现有员工人数的50%,为了保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.
(1)设公司裁员人数为,写出公司获得的经济效益(千元)关于的函数(经济效益=在职人员创利总额—被裁员工生活费);
(2)为了获得最大的经济效益,该公司应裁员多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,为两非零有理数列(即对任意的,均为有理数),为一无理数列(即对任意的,为无理数).
(1)已知,并且对任意的恒成立,试求的通项公式.
(2)若为有理数列,试证明:对任意的,恒成立的充要条件为.
(3)已知,,对任意的,恒成立,试计算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数一个周期内的图象,将图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把所得图象向右平移个单位长度,得到函数的图象.
(1)求函数和的解析式;
(2)若,求的所有可能的值;
(3)求函数(为正常数)在区间内的所有零点之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:
(1)当时,函数取最小值;
(2)函数在区间上是增函数;
(3)若最小,则;
(4)在上至少有两个零点;
其中正确的判断序号是______(把你认为正确的判断序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为提高生产质量,引入了一批新的生产设备,为了解生产情况,随机抽取了新、旧设备生产的共200件产品进行质量检测,统计得到产品的质量指标值如下表及图(所有产品质量指标值均位于区间内),若质量指标值大于30,则说明该产品质量高,否则说明该产品质量一般.
质量指标 | 频数 |
2 | |
8 | |
10 | |
30 | |
20 | |
10 | |
合计 | 80 |
(1)根据上述图表完成下列列联表,并判断是否有的把握认为产品质量高与引人新设备有关;
新旧设备产品质量列联表
产品质量高 | 产品质量一般 | 合计 | |
新设备产品 | |||
旧设备产品 | |||
合计 |
(2)从旧设备生产的质量指标值位于区间的产品中,按分层抽样抽取6件产品,再从这6件产品中随机选取2件产品进行质量检测,求至少有一件产品质量指标值位于的概率.
附:,.
0.10 | 0.05 | 0.01 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系上放置一个边长为1的正方形,此正方形沿轴滚动(向左或向右均可),滚动开始时,点位于原点处,设顶点的纵坐标与横坐标的函数关系式,,该函数相邻两个零点之间的距离为.
(1)写出的值并求出顶点到的最小运动路径的长度的值;
(2)写出函数,,的表达式;并研究该函数除周期外的基本性质(无需证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张军自主创业,在网上经营一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120元/千克、80元/千克、70元/千克、40元千克,为增加销量,张军对这四种干果进行促销:一次购买干果的总价达到150元,顾客就少付x(2x∈Z)元.每笔订单顾客网上支付成功后,张军会得到支付款的80%.
①若顾客一次购买松子和腰果各1千克,需要支付180元,则x=________;
②在促销活动中,为保证张军每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】清华大学自主招生考试题中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:
题 | A | B | C |
答卷数 | 180 | 300 | 120 |
(Ⅰ)负责招生的教授为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?
(Ⅱ)测试后的统计数据显示,A题的答卷得优的有60份,若以频率作为概率,在(Ⅰ)问中被抽出的选择A题作答的答卷中,记其中得优的份数为,求的分布列及其数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com