精英家教网 > 高中数学 > 题目详情
10.设方程ex+x=a的解为x1,方程lnx+x=a的解为x2,则|x1-x2|的最小值为1.

分析 此题要求的虽然是绝对值的最小值,但是通过观察发现两个方程都是非μ常规的我们不会解的方程类型,所以我们换个思路,运用函数的思想来解决方程的有关问题.将方程的解x1看作是函数${y}_{1}={e}^{x}$与函数y0=a-x交点坐标的横坐标值;将方程的解x2看作是函数y2=lnx与函数y0=a-x交点坐标值得横坐标;由于函数y1,y2互为反函数,均与直线y0有交点,所以两个交点关于直线y=x对称,所以${x}_{2}={e}^{{x}_{1}}$,|x1-x2|=$|{e}^{{x}_{1}}-{x}_{1}|$,可看作是函数${g}_{(x)}={e}^{x}-x$的绝对值,此时问题变为求函数绝对值的最小值,又因为其为非常规函数,所以应用导数的方法求解.

解答 解:方程ex+x=a的解x1可以看作是函数${y}_{1}={e}^{x}$与函数y0=a-x交点坐标的横坐标值;
方程lnx+x=a的解x2可以看作是函数y2=lnx与函数y0=a-x交点坐标的横坐标值;
∵函数y1,y2互为反函数,且均与函数y0有交点,
∴两个交点关于直线y=x对称,∴${x}_{2}={e}^{{x}_{1}}$,
∴${x}_{2}-{x}_{1}={e}^{{x}_{1}}-{x}_{1}$,
构造函数${g}_{(x)}={e}^{x}-x$,则丨x1-x2丨的最小值可以看作函数丨g(x)丨的最小值;
我们用导数的方法一研究其何时取得最小值;
∴函数${g}_{(x)}={e}^{x}-x$的导数${{g}^{′}}_{(x)}={e}^{x}-1$,则g′(x)=0的解为x=0;
∴$|{x}_{1}-{x}_{2}|=|{e}^{{x}_{1}}-{x}_{1}|=|{g}_{(x)}|$,故其最小值为1;
故答案为:1.

点评 这道题充分利用了函数的性质,互逆函数间的对称关系,并利用导数的方法研究函数的最值问题.难点在于将方程的解变成是函数的交点,并采用构造函数的方法研究最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知a=0.80.7,b=log23,c=log0.32,则a,b,c大小关系是(  )
A.c<b<aB.a<b<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合$A=\left\{{x\left|{2sinx-1>0,0<x<2π}\right.}\right\},B=\left\{{x\left|{{2^{{x^2}-x}}}\right.>4}\right\}$
(1)求集合A和B;
(2)求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)在x=1处可导,则$\lim_{△x→0}\frac{f(1+△x)-f(1)}{-2△x}$等于(  )
A.f'(1)B.$-\frac{1}{2}f'(1)$C.-2f'(1)D.-f'(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax-1,其中a>0且a≠1
(1)求f(2)+f(-2)的值;
(2)求x<0时f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.复数z=(1+i)(a-i)表示的点在第四象限,则实数a的取值范围是-1<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线x+y-2=0与圆x2+y2-4y=0的位置关系是(  )
A.相交且过圆心B.相离C.相切D.相交且不过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线4x+3y-35=0与圆心在原点的圆C相切,则圆C的方程为x2+y2=49.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了增强环保意识,我校从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:
优秀非优秀总计
男生402060
女生203050
总计6050110
(Ⅰ)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(Ⅱ)为参加市里举办的环保知识竞赛,学校举办预选赛,已知在环保测试中优秀的同学通过预选赛的概率为$\frac{2}{3}$,现在环保测试中优秀的同学中选3人参加预选赛,若随机变量X表示这3人中通过预选赛的人数,求X的分布列与数学期望.
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.4000.1000.0100.001
k0.4550.7082.7066.63510.828

查看答案和解析>>

同步练习册答案