【题目】已知函数f(x).
(1)画出函数f(x)的图象,根据图象直接写出f(x)的值域;
(2)根据图象直接写出满足f(x)≥2的所有x的集合;
(3)若f(x)的递减区间为(﹣∞,a),递增区间为(b,+∞),直接写出a的最大值,b的最小值.
【答案】(1)图见解析,值域为:[0,+∞);(2)(﹣∞,﹣1]∪[1,+∞);(3)a的最大值为0,b的最小值为0.
【解析】
(1)根据分段函数解析式,画出函数图象,并根据图象求得函数的值域.
(2)根据图象,求得不等式的解集.
(3)根据图象,由图求得函数的单调区间,进而求得的最大值和的最小值.
(1)因为函数f(x).
所以:函数f(x)的图象如图:;由图可知其值域为:[0,+∞);
(2)满足f(x)≥2的所有x的集合是:(﹣∞,﹣1]∪[1,+∞);
(3)因为函数的递减区间为:(﹣∞,0];递增区间为:[0,+∞);
f(x)的递减区间为(﹣∞,a),递增区间为(b,+∞)
∴a的最大值为0,b的最小值为0.
科目:高中数学 来源: 题型:
【题目】已知定点,定直线: ,动圆过点,且与直线相切.
(Ⅰ)求动圆的圆心轨迹的方程;
(Ⅱ)过点的直线与曲线相交于, 两点,分别过点, 作曲线的切线, ,两条切线相交于点,求外接圆面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程: (为参数),曲线的参数方程: (为参数),且直线交曲线于两点.
(1)将曲线的参数方程化为普通方程,并求时, 的长度;
(2)巳知点,求当直线倾斜角变化时, 的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的单调函数f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,则方程f(x)﹣f′(x)=1的解所在区间是 ( )
A. (2,3) B. C. D. (1,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4y+1=0,点M(﹣1,﹣1),从圆C外一点P向该圆引一条切线,记切点为T.
(1)若过点M的直线l与圆交于A,B两点且|AB|=2,求直线l的方程;
(2)若满足|PT|=|PM|,求使|PT|取得最小值时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人进行象棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)用X表示比赛决出胜负时的总局数,求随机变量X的分布列和均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com