精英家教网 > 高中数学 > 题目详情
17.已知f(x)是定义在R上的偶函数,当x<0时,f(x)=${(\frac{1}{3})^x}$,那么f($\frac{1}{2}$)的值是$\sqrt{3}$.

分析 由已知可得f($\frac{1}{2}$)=f(-$\frac{1}{2}$),结合当x<0时,f(x)=${(\frac{1}{3})^x}$,可得答案.

解答 解:∵当x<0时,f(x)=${(\frac{1}{3})^x}$,
∴f(-$\frac{1}{2}$)=${{(\frac{1}{3})}^{-\frac{1}{2}}}^{\;}$=$\sqrt{3}$,
又∵f(x)是定义在R上的偶函数,
∴f($\frac{1}{2}$)=f(-$\frac{1}{2}$)=$\sqrt{3}$,
故答案为:$\sqrt{3}$

点评 本题考查的知识点是函数求值,函数的奇偶性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+$\frac{1}{|x|}$.
(1)求解不等式f(x)≥2x;
(2)$\frac{1}{{x}^{2}}$+x2+2mf(x)≥0在x∈[1,2]上恒成立,求m的取值范围;
(3)设函数g(x)=x2+(-3+c)x+c2,若方程g(f(x))=0有6个实根,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程${x^2}+{y^2}+2{k^2}x-y+k+\frac{1}{4}=0$所表示的曲线关于2x+y+1=0对称,则k的值(  )
A.等于$\frac{{\sqrt{3}}}{2}$B.等于$-\frac{{\sqrt{3}}}{2}$C.等于$±\frac{{\sqrt{3}}}{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足a1=3,a5=15,数列{bn}满足b1=4,b5=31,设正项等比数列{cn}满足cn=bn-an
(1)求数列{an}和{cn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正△ABC的边长为a,那么的平面直观图△A'B'C'的面积为$\frac{{\sqrt{6}}}{16}{a^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知空间四边形OABC,如图所示,其对角线为OB、AC,M、N分别为OA、BC的中点,点G在线段MN上,且$\overrightarrow{MG}$=3$\overrightarrow{GN}$,现用基向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$表示向量$\overrightarrow{OG}$,并设$\overrightarrow{OG}$=x•$\overrightarrow{OA}$+y•$\overrightarrow{OB}$+z•$\overrightarrow{OC}$,则x、y、z的和为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,且集合$M=\left\{{z|z={{({\frac{i-1}{i+1}})}^n},n∈{N^*}}\right\}$,则集合M的非空子集的个数为(  )
A.16B.15C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R
(1)当a=1时,求函数f(x)的最小值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,则不等式f(x+1)<3的解集是(-4,2).

查看答案和解析>>

同步练习册答案