精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建的居民区,分别位于平面xOy内三点A(3,20),B(-10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.

(1)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明).
(2)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.
(1)|x-3|+|y-20|,x∈R,y∈[0,+∞)
(2)在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.

【解题指南】本题考查了绝对值函数和绝对值不等式的应用.
解:设点P的坐标为(x,y),
(1)点P到居民区A的“L路径”长度最小值为|x-3|+|y-20|,x∈R,y∈[0,+∞).
(2)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P分别到三个居民区的“L路径”长度最小值之和(记为d)的最小值.
①当y≥1时,d=|x+10|+|x-14|+|x-3|+2|y|+|y-20|,
因为d1(x)=|x+10|+|x-14|+|x-3|≥|x+10|+|x-14|. (*)
当且仅当x=3时,不等式(*)中的等号成立,
又因为|x+10|+|x-14|≥24. (**)
当且仅当x∈[-10,14]时,不等式(**)中的等号成立.
所以d1(x)≥24,当且仅当x=3时,等号成立,
因为d2(y)=2y+|y-20|≥21,当且仅当y=1时,等号成立.故点P的坐标为(3,1)时,P到三个居民区的“L路径”长度之和最小,且最小值为45.
②当0≤y≤1时,由于“L路径”不能进入保护区,所以d=|x+10|+|x-14|+|x-3|+1+|1-y|+|y|+|y-20|.
此时,d1(x)=|x+10|+|x-14|+|x-3|,
d2(y)=1+|1-y|+|y|+|y-20|=22-y≥21.
由①知,d1(x)≥24,故d1(x)+d2(y)≥45,当且仅当x=3,y=1时等号成立.
综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若a,b,m,n都为正实数,且m+n=1.
求证:≥m+n.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不等式x2﹣4x+a<0存在小于1的实数解,则实数a的取值范围是(  )
A.(﹣∞,4)B.(﹣∞,4]
C.(﹣∞,3)D.(﹣∞,3]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a,b,c是正数,P=a+b-c,Q=b+c-a,R=c+a-b,则“P·Q·R>0”是“P,Q,R同时大于零”的 (  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a>b>0,c>d>0,m=-,n=,则m与n的大小关系是(  )
A.m<nB.m>nC.m≥nD.m≤n

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面四个命题:①若a>b,c>1,则algc>blgc;
②若a>b,c>0,则algc>blgc;
③若a>b,则a·2c>b·2c;
④若a<b<0,c>0,则>.
其中正确命题有    .(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b∈(0,+∞),且a≠b,M=+,N=+,则M与N的大小关系是 (  )
A.M>NB.M<N
C.M≥ND.M≤N

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若关于x的不等式|x-a|<1的解集为(2,4),则实数a的值
为 (  )
A.3B.2C.-3D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知-1<a+b<3,且2<a-b<4,求2a+3b的取值范围.

查看答案和解析>>

同步练习册答案