精英家教网 > 高中数学 > 题目详情
8.已知菱形ABCD与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1相切,则菱形ABCD面积的最小值为(  )
A.8$\sqrt{2}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.8$\sqrt{3}$

分析 设菱形的边在第一象限所在直线的方程为:$\frac{x}{m}+\frac{y}{n}$=1,化为nx+my=mn(m,n>0).与椭圆方程联立化为(3m2+4n2)x2-8mn2x+4n2m2-12m2=0,令△=0,即可得出.

解答 解:设菱形的边在第一象限所在直线的方程为:$\frac{x}{m}+\frac{y}{n}$=1,化为nx+my=mn(m,n>0).
联立$\left\{\begin{array}{l}{nx+my=mn}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,
化为(3m2+4n2)x2-8mn2x+4n2m2-12m2=0,
令△=64m2n4-16(3m2+4n2)(n2m2-3m2)=0,
化为m2n2=3m2+4n2≥2$\sqrt{3×4}$mn,当且仅当$\sqrt{3}m$=2n=$2\sqrt{6}$时取“=”.
解得mn≥4$\sqrt{3}$,
∴S菱形=$\frac{1}{2}×2m×2n$=2mn≥8$\sqrt{3}$.
∴菱形ABCD面积的最小值为8$\sqrt{3}$.
故选:D.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相切问题、菱形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一点P到右焦点的距离为2,求点P到双曲线的渐近线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知三角形ABC的三个顶点A(1,1),B(4,0),C(3,2),求三角形BC边上的高线和中线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+x,x<0\\{x^2}-x,x>0\end{array}$,
(1)作出函数的图象;并写出单调区间.
(2)求函数的最小值,并求出对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数f(x)与g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,则称f(x)与g(x)是区间D上的“亲密函数”.设函数f(x)=log4(x-m),g(x)=log4$\frac{1}{x-3m}$,区间D为[m+2,m+3].
(1)若f(x)与g(x)在区间[m+2,m+3]上都有意义,求实数m的取值范围.
(2)若f(x)与g(x)是区间[m+2,m+3]上的“亲密函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.不论实数a与b为何值时,直线l:(a+2b)x+(a+b)y-3a-4b=0恒过定点P,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各图中,可表示函数y=f(x)的图象的只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数f(x)与时间x(小时)的关系为$f(x)=|{\frac{4}{3}sin(\frac{π}{36}x)-a}|+{a^{\frac{1}{2}}}$,x∈[0,24],其中a是与气象有关的参数,且$a∈[0,\frac{3}{4}]$,若用每天f(x)的最大值为当天的综合污染指数,记作M(a)
(1)令$t=\frac{4}{3}sin(\frac{π}{36}x)$,x∈[0,24],试求t的取值范围
(2)试求函数M(a)
(3)市政府规定每天的综合污染指数不得超过2,试问目前该市的污染指数是否超标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=lg\frac{x+1}{x-1}+lg(x-1)+lg(a-x)$ (a>1).
(I)求函数定义域并判断是否存在一个实数a,使得函数y=f(x)的图象关于某一条垂直于x轴的直线对称?若存在,求出这个实数a;若不存在,说明理由.
(II)当f(x)的最大值为2时,求实数a的值.

查看答案和解析>>

同步练习册答案