精英家教网 > 高中数学 > 题目详情
8.已知a>0,b>0,且$\frac{1}{a}+\frac{2}{b}=1$,则a+2b的最小值为(  )
A.$5+2\sqrt{2}$B.$8\sqrt{2}$C.5D.9

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵a>0,b>0,且$\frac{1}{a}+\frac{2}{b}=1$,
则a+2b=(a+2b)$(\frac{1}{a}+\frac{2}{b})$=5+$\frac{2b}{a}+\frac{2a}{b}$≥5+2×$2\sqrt{\frac{b}{a}•\frac{a}{b}}$=9,当且仅当b=a=3时取等号.
故选:D.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.先化简,再求值:$\frac{{{x^2}-x}}{{{x^2}-1}}×(2+\frac{{{x^2}+1}}{x})$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow a$与$\overrightarrow b$的夹角为120°,若$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,且$|\overrightarrow a|=2$,则$\overrightarrow b$在$\overrightarrow a$方向上的正射影的数量为$-\frac{{\sqrt{33}+1}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a是实数,则函数f(x)=$\frac{1}{{|{a•{e^x}+1}|}}$-2的图象不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0.若$\sqrt{3}是{3^a}与{3^b}的等比中项,则\frac{1}{a}+\frac{2}{b}$的最小值为(  )
A.3B.$2\sqrt{2}$C.2+$3\sqrt{2}$D.3+$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-a|.
(Ⅰ) 当a=-2时,解不等式f(x)≥16-|2x-1|;
(Ⅱ) 若关于x的不等式f(x)≤1的解集为[0,2],求证:f(x)+f(x+2)≥2a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.方程ex-x=2在实数范围内的解有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x<5,则$\sqrt{{x^2}-10x+25}$=5-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.证明下列两个结论:
(1)当点(x0,y0)在圆x2+y2=r2上时,切线方程为x0x+y0y=r2
(2)当点(x0,y0)在(x-a)2+(y-b)2=r2上时,切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

查看答案和解析>>

同步练习册答案