精英家教网 > 高中数学 > 题目详情
9.点M($\frac{π}{2},m$)在函数y=sinx的图象上,则m等于(  )
A.0B.1C.-1D.2

分析 把点M的坐标代入y=sinx,求得m的值.

解答 解:根据点M($\frac{π}{2},m$)在函数y=sinx的图象上,可得m=sin$\frac{π}{2}$=1,
故选:B.

点评 本题主要考查正弦函数的图象,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设数列{an}前n项的和为${S_n},且{a_1}=1,\frac{S_n}{n}={a_n}-n+1$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={a_n}•{3^{a_n}}$,求数列{bn}前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是x2=-12y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{2x+3}{3x}$,数列{an}满足${a_1}=1,{a_{n+1}}=f(\frac{1}{a_n}),(n∈{N^*})$
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_{n-1}}{a_n}}}(n≥2),{b_1}$=3,数列{bn}的前n项和为Sn,证明:对一切n∈N*,都有Sn<$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.证明:$\frac{1+sin2x}{cos2x}$=tan$(\begin{array}{l}{\frac{π}{4}+x}\end{array})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设x∈[2,8],求函数f(x)=$\frac{1}{2}$log${\;}_{\frac{1}{2}}$($\frac{1}{2}$x)•log${\;}_{\frac{1}{2}}$($\frac{1}{4}$x)的最值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在三棱锥S-ABC中,P、Q分别是△SAC和△SAB的重心,试判断BC与平面APQ的位置关系并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tan($\frac{π}{4}$+α)=2,tan(α-β)=$\frac{1}{2}$,α∈(0,$\frac{π}{4}$),β∈(-$\frac{π}{4}$,0).
(1)求tanα的值;
(2)求$\frac{1}{2sinαcosα+co{s}^{2}α}$的值;
(3)求2α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\frac{1}{x+1}$+$\frac{1}{x+2}$+$\frac{1}{x+3}$+…+$\frac{1}{x+2015}$图象的对称中心的坐标为(-1008,0).

查看答案和解析>>

同步练习册答案