精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的定义域为R,且f(2)=2,又函数f(x)的导函数y=f′(x)的图象如图所示,若两个正数a、b满足f(2a+b)<2,则 的取值范围是(
A.( ,2)
B.(﹣∞, )∪(2,+∞)
C.(2,+∞)
D.(﹣∞,

【答案】A
【解析】解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增, ∵两正数a,b满足f(2a+b)<2,
又由f(2)=2,即f(2a+b)<2,
即2a+b<2,
又由a>0.b>0;
故a,b所对应的平面区域如下图所示:

表示动点(a,b)与定点(﹣2,﹣2)连线的斜率,
当直线过(1,0)点时, =
当直线过(0,2)点时, =2,
∈( ,2),
故选:A.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设实数满足约束条件,的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量,与月份的关系,模拟函数可以选用二次函数或函数为常数)已知四月份该产品的产量为1.37万件,请问用以上哪个函数作模拟函数较好?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则该三棱锥S﹣ABC的外接球的表面积为(
A.32π
B.
C.
D. π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况,收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人,已知这20位女生的数据茎叶图如图所示.

(I)将这20位女生的时间数据分成8组,分组区间分别为,…,,完成频率分布直方图;

(II)以(I)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;(III)以(I)中的频率估计100位女生中累计观看时间小于20个小时的人数,已知200位男生中累计观看时间小于20小时的男生有50人.请完成下面的列联表,并判断是否有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.

男生

女生

总计

累计观看时间小于20小时

累计观看时间小于20小时

总计

300

附:().

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,,是经过小城的东西方向与南北方向的两条公路,小城位于小城的东北方向,直线距离.现规划经过小城修建公路(,分别在上),与,围成三角形区域.

(1)设,求三角形区域周长的函数解析式;

(2)现计划开发周长最短的三角形区域,求该开发区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):

厨余垃圾

可回收物

其他垃圾

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(1)试估计厨余垃圾投放正确的概率P

(2)试估计生活垃圾投放错误的概率;

(3)假设厨余垃圾在厨余垃圾箱,可回收物箱,其他垃圾箱的投放量分别为abc,其中a>0,abc=600. 当数据abc的方差s2最大时,写出abc的值(结论不要求证明),并求出此时s2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选派一名学生参加全市实践活动技能竟赛,AB两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm

AB两位同学各加工的10个零件直径的平均数与方差列于下表;

平均数

方差

A

20

0.016

B

20

s2B

根据测试得到的有关数据,试解答下列问题:

(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;

(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.

查看答案和解析>>

同步练习册答案