精英家教网 > 高中数学 > 题目详情

     函数y=2|x|的值域是(    )

A.(0,1]          B.[1,+∞)             C.(0,1)             D.(0,+∞)

B


解析:

解法一:y=2|x|=作出图象,观察得函数的值域为[1,+∞).

解法二:令u=|x|≥0,则y=2u≥20=1.

绿色通道  本题是一道函数综合题,需利用函数的有关性质,如求函数的定义域、值域,判断函数的奇偶性、单调性等知识.在判断函数的单调性时,我们也可以采用复合函数单调性的判断方法.当x>0时,∵2x为增函数,

∴2x-1为增函数,为递减函数,-为增函数.

∴y=--在(0,+∞)上递增.一般地,函数y=f(u)和函数u=g(x),设函数y=f[g(x)]的定义域为集合A,如果在A或A的某个子区间上函数y=f(u)(称外层函数)与u=g(x)(称内层函数)单调性相同,则复合函数y=f[g(x)]在该区间上递增;如单调性相反,则复合函数y=f[g(x)]在该区间上递减(可以简记为“同增异减”).另外,记住以下结论对判断复合函数单调性很有帮助:①若函数y=f(x)递增(减),则y=-f(x)递减(增);②若函数y=f(x)在某个区间上恒为正(负)且递增(减),则y=递减(增);③若函数y=f(x)递增(减),则y=f(x)+k递增(减).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、下列5个判断:
①若f(x)=x2-2ax在[1,+∞)上增函数,则a=1;
②函数y=2x-1与函数y=log2(x+1)的图象关于直线y=x对称;
③函数y=In(x2+1)的值域是R;
④函数y=2|x|的最小值是1;
⑤在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.
其中正确的是
②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青岛一模)设x1<x2,定义区间[x1,x2]的长度为x2-x1,已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin(
2
3
x+
2
)是偶函数;
②函数y=2|x|的最小值是1;
③函数y=ln(x2+1)的值域是R;
④函数y=sin2x的图象向左平移
π
4
个单位,得到y=sin(2x+
π
4
)的图象
⑤函数f(x)=2x-x2只有两个零点;
其中正确命题的序号是
①②⑤
①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

下列五个判断:
①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;
②函数y=ln(x2-1)的值域是R;
③函数y=2|x|的最小值是1;
④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称;
⑤当0<x≤
1
2
时,若4x<logax,则a的取值范围是(0,
2
2
)

其中正确命题的序号是
②③④
②③④
(写出所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个判断:
①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;
②函数y=ln(x2+1)的值域是R;
③函数y=2|x|的最小值是1;
④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称;
其中正确命题的序号是
③④
③④

查看答案和解析>>

同步练习册答案