精英家教网 > 高中数学 > 题目详情

【题目】如图C,D是以AB为直径的圆上的两点,,F是AB上的一点,且,将圆沿AB折起,使点C在平面ABD的射影E在BD上,已知

1求证:AD平面BCE

(2)求证AD//平面CEF;

(3)求三棱锥A-CFD的体积.

【答案】(1)参考解析;(2)参考解析;(3)

【解析】

试题分析:(1)因为由于AB是圆的直径,所以ADBD,又因为点C在平面ABD的射影E在BD上,所以CE平面ADB.又因为平面ADB.所以ADCE.又因为.所以AD平面BCE.

(2)因为.有直角三角形的勾股定理可得.在直角三角形BCE中,又.所以.又BD=3,.所以可得.所以ADFE,又因为平面CEF, 平面CE.所以AD//平面CEF.

(3)通过转换顶点三棱锥A-CFD的体积.因为.所以.

试题解析:(1)证明:依题意:

平面

平面 4分

(2)证明:中,

中,

在平面外,在平面内,

平面 8分

(3)解:由(2)知,且

平面

12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设F为双曲线 =1(a>b>0)的右焦点,过点F的直线分别交两条渐近线于A,B两点,OA⊥AB,若2|AB|=|OA|+|OB|,则该双曲线的离心率为(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知[1,+∞).

(1)时,判断函数单调性并证明;

(2)时,求函数的最小值;

(3)若对任意[1,+∞),>0恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数y=sin2x的最小正周期为 ;命题q:函数y=cosx的图象关于直线x= 对称.则下列判断正确的是(
A.p为真
B.¬q为假
C.p∧q为假
D.p∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.

(1)试求y=f(x)的函数关系式;

(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1
(2)在AE上求一点M,使得A1M⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,其中函数g(x)的图象在点(1,g(1))处的切线平行于x轴.
(1)确定a与b的关系;
(2)若a≥0,试讨论函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求证:SA⊥BD;
(2)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

查看答案和解析>>

同步练习册答案