精英家教网 > 高中数学 > 题目详情
在如图的多面体中,EF⊥平面AEB,AE⊥EB,ADEF,EFBC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(Ⅰ)求证:AB平面DEG;
(Ⅱ)求二面角C-DF-E的余弦值.
(Ⅰ)证明:∵ADEF,EFBC,
∴ADBC.
又∵BC=2AD,G是BC的中点,
AD
.
.
BG

∴四边形ADGB是平行四边形,∴ABDG.
∵AB?平面DEG,DG?平面DEG,
∴AB平面DEG.…(6分)
(Ⅱ)∵EF⊥平面AEB,AE?平面AEB,BE?平面AEB,
∴EF⊥AE,EF⊥BE,
又∵AE⊥EB,∴EB,EF,EA两两垂直.…(7分)
以点E为坐标原点,EB,EF,EA分别为x,y,z轴建立空间直角坐标系,
由已知得A(0,0,2),B(2,0,0),C(2,4,0),F(0,3,0),D(0,2,2),G(2,2,0),
由已知得
EB
=(2,0,0)是平面EFDA的法向量,
设平面DCF的法向量
n
=(x,y,z),
FD
=(0,-1,2),
FC
=(2,1,0),
FD
n
=-y+2z=0
FC
n
=2x+y=0
,解得
n
=(-1,2,1).
设二面角C-DF-E的平面角为θ,
则cosθ=cos<
n
EB
>=
-2
2
6
=-
6
6

∴二面角C-DF-E的余弦值为-
6
6

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD为直角梯形,ADBC,AB⊥BC,AB=AD=PB.点E在棱PA上,.
(1)求异面直线PA与CD所成的角;
(2)点E在棱PA上,且
PE
EA
,当λ为何值时,有PC平面EBD;
(3)在(2)的条件下求二面角A-BE-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的正视图是边长为2的正方形,侧视图和俯视图是全等的等腰三角形,直线边长为2.
(1)求二面角C-SB-A的大小;
(2)P为棱SB上的点,当SP的长为何值时,CP⊥SA?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四边形ABCD与CDEF均为正方形,平面ABCD⊥平面CDEF.
(Ⅰ)求证:ED⊥平面ABCD;
(Ⅱ)求二面角D-BE-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=
6

(I)求证:AO⊥平面BCD;
(Ⅱ)求二面角A-BC-D的余弦值;
(Ⅲ)求O点到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A-B1E-A1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E面AB′D′;
(2)求面AB'D'与面ABD所成锐二面角的余弦值;
(3)求四棱锥B'-ABCD与D'-ABCD的公共部分体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量=(x,1),=(4,x),若向量方向相同,则实数x的值是(  )
A.﹣2B.2C.0D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知关于的方程有,则
A.B.C.D.无解

查看答案和解析>>

同步练习册答案