精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)当时,求曲线在点处的切线方程;

(2)如果不等式对于一切的恒成立,求的取值范围;

(3)证明:不等式对于一切的恒成立

【答案】(1)(2)(3)见解析

【解析】分析:(1)先求一阶导函数,用点斜式写出切线方程

(2)分离变量构建函数转化为求函数的最大值

(3)构建函数证明的最小值大于0.

解:(1)当时,,则,故,所以曲线在点处的切线方程为:

(2)因为,所以恒成立,等价于恒成立.

,得

时,,所以 上单调递减,

所以 时,.

因为 恒成立,所以的取值范围是

(3)当时,,等价于.

,得.

由(2)可知,时,恒成立.

所以时,,有,所以.

所以上单调递增,当时,.

因此当时,恒成立

分析:(1)利用导数求在某点切线方程利用即可。

(2)已知不等式的恒成立,求解参数的取值范围,分离变量,转化为求函数的最值问题。

(3)证明不等式恒成立问题,构建函数,证明的最小值大于0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于直线以及平面,下面命题中正确的是( )

A. ,则

B. ,则

C. ,则

D. ,且,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名髙一新生分成水平相同的甲、乙两个平行班”,每班50.陈老师采用AB两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为成绩优秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)从乙班随机抽取2名学生的成绩,成绩优秀的个数为,求的分布列和数学期望

(II)根据频率分布直方图填写下面2 x2列联表,并判断是否有95%的把握认为:“成绩优秀与教学方式有关.

甲班A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)对任意实数xy恒有fx+y)=fx+fy)且当x0fx)<0

给出下列四个结论:

f0)=0 fx)为偶函数;

fx)为R上减函数; fx)为R上增函数.

其中正确的结论是(  )

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南安阳市高三一模如下图在平面直角坐标系直线与直线之间的阴影部分即为区域中动点的距离之积为1

)求点的轨迹的方程

)动直线穿过区域分别交直线两点若直线与轨迹有且只有一个公共点求证 的面积恒为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2lnx.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数fx)=aa为常数).

1)求a的值;

2)若函数gx)=|2x+1fx|k2个零点,求实数k的取值范围;

3)若x[2,﹣1]时,不等式fx恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.直线交曲线两点.

(Ⅰ)写出直线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设点的直角坐标为,求点两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,首项a1=1,且a3+1a2+1a4+2的等比中项.

1)求数列{an}的通项公式;

2)设bn=,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案