精英家教网 > 高中数学 > 题目详情

【题目】公差不为零的等差数列{an}中,a3=7,且a2a4a9成等比数列.

(1)求数列{an}的通项公式;

(2)设bn ,求数列{bn}的前n项和Sn

【答案】(1)an3n2;(2).

【解析】试题分析:(1)设数列的公差为d,根据a3=7,又a2,a4,a9成等比数列,可得(7+d)2=(7-d)(7+6d),从而可得d=3,进而可求数列{an}的通项公式;
(2)先确定数列{bn}是等比数列,进而可求数列{bn}的前n项和Sn

试题解析:

(1)由数列{an}为公差不为零的等差数列设其公差为dd0.

因为a2a4a9成等比数列

所以aa2·a9(a13d)2(a1d)(a18d)

整理得d23a1d.

因为d0所以d3a1.

因为a37所以a12d7.

由①②解得a11d3

所以an1(n1)×33n2.

故数列{an}的通项公式是an3n2.

(2)(1)bn23n2

因为8

所以{bn}是等比数列且公比为8首项b12

所以Sn.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一圆经过点,且它的圆心在直线.

I求此圆的方程

II若点为所求圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线与双曲线有公共焦点是曲线在在第一象限的交点

1求双曲线的方程

2为圆心的圆与双曲线的一条渐进线相切.已知点,过点作互相垂直分别与圆相交的直线被圆解得的弦长为被圆截得的弦长为.试探索是否为定值请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100~110的学生数有21人。

(Ⅰ)求总人数N和分数在110~115分的人数n;

(Ⅱ)现准备从分数在110~115分的n名学生(女生占)中任选2人,求其中恰好含有一名女生的概率;

(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩。

数学

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?

附:对于一组数据其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:

价格

5

5.5

6.5

7

销售量

12

10

6

4

通过分析,发现销售量对奶茶的价格具有线性相关关系.

(Ⅰ)求销售量对奶茶的价格的回归直线方程;

(Ⅱ)欲使销售量为杯,则价格应定为多少?

附:线性回归方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,三个内角ABC所对的边分别为abc,且acsin C=(a2c2b2)·sin B

(1)若C,求A的大小;

(2)若ab,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形ABC的边长为4,M,N分别为AB,AC的中点,沿MN将△AMN折起,使点A到A′的位置.若平面A′MN与平面MNCB垂直,则四棱锥A′MNCB的体积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:以点()为圆心的圆与轴交

于点O, A,与y轴交于点O, B,其中O为原点.

(1)求证:△OAB的面积为定值;

(2)设直线与圆C交于点M, N,若OM = ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的动直线l交椭圆CA、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案