精英家教网 > 高中数学 > 题目详情
设集合A={x|x2+2x-8≤0},B={x|
2x
x-1
>1},
(1)求(∁RA)∩B;
(2)设集合C={x|x≥a},若∁R(B∪C)=∅,求a的取值范围.
考点:交、并、补集的混合运算
专题:集合
分析:(1)先通过解一元二次不等式和分式不等式求出集合A,B,然后进行交集补集的运算即可;
(2)由已知条件得B∪C=R,根据B={x|x>1,或x<-1},C={x|x≥a}即可得到a≤-1.
解答: 解:A={x|-4≤x≤2},B={x|x>1,或x<-1};
(1)(∁RA)∩B={x|x<-4,或x>2}∩{x|x>1,或x<-1}={x|x>2,或x<-4};
(2)由∁R(B∪C)=∅知B∪C=R;
∴a≤-1;
∴a的取值范围是(-∞,-1].
点评:考查解一元二次不等式,分式不等式,集合的补集、交集、并集运算,可借助数轴求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表:
相关人员数抽取人数
公务员35b
教师a3
自由职业者284
则调查小组的总人数为(  )
A、84B、12C、81D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量ξ服从正态分布N(2,9),若P(ξ>a+b)=P(ξ<a-b),则a=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

规定[t]为不超过t的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].
(1)若x=
7
16
,分别求f1(x)和f2(x);
(2)若f1(x)=1,f2(x)=3同时满足,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈Z,A={(x,y)|ax-y≤3},且(2,1)∈A,(1,-4)∉A,则不满足条件的a的值是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是(  )
A、f(x)=(x-1)2
B、f(x)=
1
x
C、f(x)=ex
D、f(x)=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:

若P(3,-2),Q(
1
2
1
2
),R(a,3)三点在一条直线上,则a的值为(  )
A、2
B、
1
2
C、-2
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:0.75-1×(
3
2
)
1
2
×(6
3
4
)
1
4
+10(
3
-2)-1+(
1
300
)-
1
2
+16
1
4
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于正项数列{an},定义Hn=
n
a1+2a2+3a3+…+nan
,若Hn=
2
n+2
,则数列{an}的通项公式为
 

查看答案和解析>>

同步练习册答案