精英家教网 > 高中数学 > 题目详情

【题目】已知是异面直线,外的一点,则下列结论中正确的是(

A.有且只有一条直线与都垂直B.有且只有一条直线与都平行

C.有且只有一个平面与都垂直D.有且只有一个平面与都平行

【答案】A

【解析】

根据垂线的唯一性、平行公理,线面垂直的性质、线面平行性质进行逐一判断即可.

A:作的平行线共面,若过的直线与都垂直,则该直线垂直于,所以垂直于所在平面因为过平面外一点只可作一条直线与这个平面垂直,所以过有且只有一条直线与都垂直.故本结论正确;.

B:如果过的直线都与都平行,根据平行公理,平行这与是异面直线矛盾,故本结论错误;

C:如果与过过的平面都垂直,那么平行这与是异面直线矛盾,故本结论错误;

D:若过确定的平面,就不存在与都平行,故本结论错误;

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省确定从2021年开始,高考采用“”的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目;“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取名学生进行调查.

(1)已知抽取的名学生中含男生110人,求的值及抽取到的女生人数;

(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的n名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有99.5%的把握认为选择科目与性别有关?

说明你的理由;

(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学图书馆举行高中志愿者检索图书的比赛,从高一、高二两个年级各抽取10名志愿者参赛。在规定时间内,他们检索到的图书册数的茎叶图如图所示,规定册数不小于20的为优秀.

() 从两个年级的参赛志愿者中各抽取两人,求抽取的4人中至少一人优秀的概率;

() 从高一10名志愿者中抽取一人,高二10名志愿者中抽取两人,3人中优秀人数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆柱的底面圆的半径,圆柱的表面积为;点在底面圆上,且直线与下底面所成的角的大小为

(1)求点到平面的距离;

(2)求二面角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

某学校高一数学兴趣小组对学生每周平均体育锻炼小时数与体育成绩优秀(体育成绩满分100分,不低于85分称优秀)人数之间的关系进行分析研究,他们从本校初二,初三,高一,高二,高三年级各随机抽取了40名学生,记录并整理了这些学生周平均体育锻炼小时数与体育成绩优秀人数,得到如下数据表:

初二

初三

高一

高二

高三

周平均体育锻炼小时数工(单位:小时)

14

11

13

12

9

体育成绩优秀人数y(单位:人)

35

26

32

26

19

该兴趣小组确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.

1)若选取的是初三,高一,高二的3组数据,请根据这3组数据,求出y关于x的线性回归方程

2)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过1,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?

参考数据:.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面且边长为的菱形,侧面为正三角形,其所在平面垂直于底面,若的中点,的中点.

1)求证:平面

2)求证:

3)在棱上是否存在一点,使平面平面,若存在,确定点的位置;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作一直线与双曲线相交于两点,若中点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为的正方形中,点分别是边上的点,且,将沿折起,使得两点重合于点上,设交于点,过点点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案