精英家教网 > 高中数学 > 题目详情
抛物线y2=-16x的焦点坐标为(  )
A、(0,-4)
B、(4,0)
C、(0,4)
D、(-4,0)
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由已知中抛物线y2=-16x的方程,分析抛物线y2=-16x的点,可得答案.
解答: 解:∵抛物线的方程为:y2=-16x,
即2p=-16,
故p=-8,
p
2
=-4,
∴抛物线y2=-16x的焦点坐标是(-4,0),
故选:D.
点评:本题考查的知识点是抛物线的简单性质,熟练掌握抛物线的性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)在R上的导函数是f′(x),若f(x)=f(4-x),且当x∈(-∞,2)时,(x-2)•f′(x)<0.角A、B、C是锐角△ABC的三个内角,下面给出四个结论:
(1)f(sin
3
)>f(cos
4
)
;     
(2)f(2log23)<f(log0.50.1);
(3)f(sinA+sinB)>f(cosA+cosB);
(4)f(sinB-cosB)>f(cosA-sinC);
则上面这四个结论中一定正确的有(  )个.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

对函数f(x),若任意a,b,c∈R,f(a),f(b),f(c)为一三角形的三边长,则称f(x)为“三角型函数”,已知函数f(x)=
2x+m
2x+2
(m>0)是“三角型函数”,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax+y-2=0与圆心为C的圆(x-2)2+(y-2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,点M(1,1),若N(x,y)满足
x-4y+3≤0
2x+y-12≤0
x≥1
.则
OM
ON
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C:x2+y2-8x+4y+19=0关于直线x+y+1=0对称的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=
3
sin2x
1
n
=
1
3+cos2x
,设函数f(x)=
m
n

(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,若2
AC
BC
=
2
ab,c=2
2
,f(A)=4,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有
 

①函数y=log
1
2
(x2-2x-3)
的单调增区间是(-∞,1);
②若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
③若函数f(x)在(-∞,0),[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
④函数y=
1-x2
|x+1|+|x-2|
是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x≥0
y≥0
y+2x≤4
y+x≤s
表示的平面区域是一个三角形,则s的取值范围是(  )
A、0<s≤2或s≥4
B、0<s≤2
C、2≤s≤4
D、s≥4

查看答案和解析>>

同步练习册答案