精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是等差数列,若a9+3a11<0,a10a11<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于(
A.20
B.17
C.19
D.21

【答案】C
【解析】解:∵a9+3a11<0,∴由等差数列的性质可得a9+3a11=a9+a11+2a11=a9+a11+a10+a12=2(a11+a10)<0,
又a10a11<0,∴a10和a11异号,
又∵数列{an}的前n项和Sn有最大值,
∴数列{an}是递减的等差数列,
∴a10>0,a11<0,
∴S19= = =19a10>0
∴S20= =10(a1+a20)=10(a10+a11)<0
∴Sn取得最小正值时n等于19
故选:C
【考点精析】认真审题,首先需要了解等差数列的性质(在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.

(1)根据已知条件完成上面的列联表,若按的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?

(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某社区居民的家庭年收入与年支出的关系,相关部门随机调查了该社区5户家庭,得到如表统计数据表:

收入x(万元)

8.2

8.6

10.0

11.3

11.9

支出y(万元)

6.2

7.5

8.0

8.5

9.8


(1)根据上表可得回归直线方程 = x+ ,其中 =0.76, = ,据此估计,该社区一户年收入为15万元的家庭年支出为多少?
(2)若从这5个家庭中随机抽选2个家庭进行访谈,求抽到家庭的年收入恰好一个不超过10万元,另一个超过11万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinθ,﹣2)与 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=f(x)﹣a
(1)当a=2时,求函数g(x)的零点;
(2)若函数g(x)有四个零点,求a的取值范围;
(3)在(2)的条件下,记g(x)得四个零点分别为x1 , x2 , x3 , x4 , 求x1+x2+x3+x4的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知OPQ是半径为1,圆心角为 的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,则矩形ABCD的面积最大是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),且x∈[ ,π].
(1)求 及| + |;
(2)求函数f(x)= +| + |的最大值,并求使函数取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足a3=5,a10=﹣9.
(1)求数列{an}的通项公式;
(2)求Sn的最大值及其相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为( )
A.3
B.2
C.
D.

查看答案和解析>>

同步练习册答案